We consider the diffusion of ionic species in technologically relevant materials such as zeolites. These materials are characterized by a disordered density distribution of charged sites that couple with the diffusing species. We present a model for ion diffusion in a specific form of charged disorder. This is a primitive model for ion diffusion in charged or acidic zeolites. The theory relies on a path integral representation of the propagator, and a Gaussian field theory for the effects of the disorder. We use the Feynman–Bogoliubov variational method to treat the model, and calculate the diffusion coefficient for ions in a medium characterized by randomly located charges. Numerical solution of our equations, and asymptotic analyses of the same, show that in our theory there is a crossover from diffusive to subdiffusive behavior beyond a threshold value for the average density of the disorder. This threshold coincides with the actual diffusion changing from processes well approximated by Gaussian paths to those involving escapes from deep potential wells and barrier crossings. These results are discussed in the context of recent field‐theoretic and renormalization group approaches to the problem of diffusion in random media. Our approach to diffusion in random media appears reasonably general and should be applicable to many technologically relevant problems, and is not compute intensive.

1.
R. M. Barrer, Zeolites and Clay Minerals (Academic, London, 1978).
2.
For example, see Introduction to Zeolite Science and Practice, edited by H. van Bekkum, E. M. Flanigen, and J. C. Jansen, Studies in Surface Science and Catalysis 58 (Elsevier, Amsterdam, 1991).
3.
S.
Lonsinger
,
A. K.
Chakraborty
,
D. N.
Theodorou
, and
A. T.
Bell
,
Catalysis Lett.
11
,
201
(
1991
);
S.
Cook
,
A. K.
Chakraborty
,
A. T.
Bell
, and
D. N.
Theodorou
,
J. Phys. Chem.
97
,
6679
(
1993
).
4.
R. L.
June
,
A. T.
Bell
, and
D. N.
Theodorou
,
J. Phys. Chem.
96
,
1051
(
1992
);
R. L.
June
,
A. T.
Bell
, and
D. N.
Theodorou
,
94
,
8232
(
1990
); ,
J. Phys. Chem.
R. L.
June
,
A. T.
Bell
, and
D. N.
Theodorou
,
95
,
8866
(
1991
).,
J. Phys. Chem.
5.
P.
Demonyis
,
S.
Yashonath
, and
M. L.
Klein
,
J. Phys. Chem.
93
,
5016
(
1989
);
S.
Fritzsche
,
R.
Haberlandt
,
J.
Karger
, and
H.
Pfeifer
,
Chem. Phys. Lett.
198
,
283
(
1992
);
G.
Schrimpf
,
H.
Schlenbrich
,
J.
Brickman
, and
P.
Bopp
,
J. Phys. Chem.
96
,
7404
(
1992
);
P.
Santikary
,
S.
Yashonath
, and
G.
Ananthakrishna
,
J. Phys. Chem.
96
,
10469
(
1992
).,
J. Phys. Chem.
6.
Y. C.
Zhang
,
Phys. Rev. Lett.
56
,
2113
(
1986
).
7.
P. C.
Martin
,
E. D.
Siggia
, and
H. A.
Rose
,
Phys. Rev. A
8
,
423
(
1973
);
C.
De Dominicus
and
L.
Peliti
,
Phys. Rev. B
18
,
353
(
1978
);
C.
De Dominicus
,
Phys. Rev. B
18
,
4913
(
1978
).,
Phys. Rev. B
8.
J. P.
Bouchaud
and
A.
Georges
,
Phys. Rep. C
195
,
127
(
1990
)
9.
D. S.
Fisher
,
Phys. Rev. A
30
,
960
(
1984
);
D. S.
Fisher
,
D.
Friedan
,
Z.
Qiu
,
S. J.
Shenker
, and
S. H.
Shenker
,
Phys. Rev. A
31
,
3841
(
1985
).,
Phys. Rev. A
10.
V. E.
Kravtsov
,
I. V.
Lerner
, and
V. I.
Yudson
,
J. Phys. A
18
,
L703
(
1985
).
11.
E.
Tosatti
,
A.
Vulpiani
, and
M.
Zannetti
,
Physica A
164
,
705
(
1990
).
12.
H.
Yahata
,
Prog. Theor. Phys.
52
,
871
(
1974
).
13.
F. W. Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986).
14.
K. L. C.
Hunt
and
J.
Ross
,
J. Chem. Phys.
75
,
976
(
1981
).
15.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
16.
S. F.
Edwards
and
P. W.
Anderson
,
J. Phys. F
5
,
965
(
1975
);
S. F. Edwards, in Fourth International Conference on Amorphous Materials, edited by R. W. Douglas and B. Ellis (Wiley, New York, 1970).
17.
K.
Binder
and
A. P.
Young
,
Rev. Mod. Phys.
58
,
801
(
1986
);
Heidelberg Colloquium on Spin Glasses, edited by J. L. van Hemmen and I. Morgenstern (Springer, Berlin, 1983).
18.
J. D.
Honeycutt
and
D.
Thirumalai
,
J. Chem. Phys.
90
,
4542
(
1989
).
19.
S. F.
Edwards
and
M.
Muthukumar
,
J. Chem. Phys.
89
,
2435
(
1988
).
20.
M.
Muthukumar
,
J. Chem. Phys.
90
,
4594
(
1989
).
21.
D.
Wu
,
K.
Hui
, and
D.
Chandler
,
J. Chem. Phys.
96
,
835
(
1992
).
22.
M. E.
Cates
and
R. C.
Ball
,
J. Phys. (Paris)
49
,
2009
(
1988
).
23.
D. Chandler, in Les Houches, Part I, Liquids, Freezing, and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, North Holland, 1991), pp. 193–285.
24.
D.
Chandler
,
Y.
Singh
, and
D. M.
Richardson
,
J. Chem. Phys.
81
,
1975
(
1984
).
25.
A. L.
Nichols
III
and
D.
Chandler
,
J. Chem. Phys.
87
,
6671
(
1987
);
A. L.
Nichols
,
D.
Chandler
,
Y.
Singh
, and
D. M.
Richardson
,
J. Chem. Phys.
81
,
5109
(
1984
).
26.
The physical argument is as follows. We consider quenched disorders that are sufficiently large, and we believe that the system is self-averaging. Therefore, the system can be divided up into several large subsystems, each of which is larger than any relevant length scale of the problem. The penetrant’s motion is averaged over all these subsystems. Since there are several subsystems, the penetrant will visit a representative ensemble of subsystems that includes configurations of the quenched disorder that are arbitrarily close to those that characterize the annealed case in the adiabatic limit. Thus the quenched and adiabatic annealed averages should be the same in the limit of large, self-averaging systems. There is one subtlety in the argument above that has been noted in the polymer statistics literature (Refs. 18 and 22). The argument is only correct if we do not restrict the penetrants to any specific initial position. This is to say that we must average over all possible initial center of mass positions of the penetrant. This average over initial positions is necessary because such an average is an ensemble average when many uncorrelated subsystems are contained in the system of interest. In our analysis to follow, we will average over initial positions. Note that any experimental measure of penetrant mobility (e.g., measurements using pulse field gradient NMR spectroscopy) is obtained by averaging over all possible initial positions.
27.
P.
Le Doussal
and
J.
Machta
,
Phys. Rev. B
40
,
9427
(
1989
).
28.
M.
Serva
and
G.
Paladin
,
Phys. Rev. Lett.
70
,
105
(
1993
).
29.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
,
Ann. Phys. (N.Y.)
24
,
118
(
1963
).
30.
D.
Thirumalai
,
Phys. Rev. A
37
,
269
(
1988
);
M. R.
Shaw
and
D.
Thirumalai
,
J. Chem. Phys.
93
,
3460
(
1990
).
31.
R. P.
Feynman
,
R. W.
Hellwarth
,
C. K.
Iddings
, and
P. M.
Platzmann
,
Phys. Rev.
127
,
1004
(
1962
);
R. P.
Feynman
,
Phys. Rev.
97
,
660
(
1955
).,
Phys. Rev.
32.
S. F.
Edwards
and
P.
Singh
,
J. Chem. Soc. Faraday Trans. 2
75
,
1001
(
1979
).
33.
J. des Cloizeaux and G. Jannink, Polymers in Solution: Their Modelling and Structure (Clarendon, Oxford, 1990).
34.
J.
des Cloizeaux
,
J. Phys. Soc. Jpn.
26
,
42
(
1969
).
35.
D.
Bratko
and
K. A.
Dawson
,
J. Chem. Phys.
99
,
5352
(
1993
);
D.
Bratko
and
K. A.
Dawson
,
Polym. Preprints
34
,
936
(
1993
);
, in Polyelectrolytes, edited by K. S. Schmitz (ACS, Washington, D.C., 1994).
36.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, 1972).
37.
A.
Engel
and
W.
Ebeling
,
Phys. Rev. Lett.
59
,
1979
(
1987
).
38.
A.
De Masi
,
P. A.
Ferrari
,
S.
Goldstein
, and
W. D.
Wick
,
J. Stat. Phys.
55
,
787
(
1989
).
39.
J. Karger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992), and references therein.
40.
M. E.
Davis
,
C.
Saldarriaga
,
C.
Montes
,
J.
Garces
, and
C.
Crowder
,
Nature (London)
331
,
698
(
1988
).
41.
B. F. Chmelka (personal communication, 1993).
42.
J. Mathews and R. L. Walker, Mathematical Methods of Physics (Addison-Wesley, Redwood City, 1970).
This content is only available via PDF.
You do not currently have access to this content.