Ketene (CH2CO) cooled in a supersonic free jet is photodissociated by a tunable pulsed laser in the energy range from the threshold for production of CH2(ã 1A1)(0,0,0)+CO(X̃ 1Σ+) to 2900 cm−1 above. By scanning the 1CH2 probe laser wavelength, the CH2 laser‐induced fluorescence spectrum is recorded and the 1CH2 product state distributions determined. The appearance thresholds and yield curves of individual 1CH2 rotational states are obtained by scanning the photolysis laser frequency with a fixed 1CH2 probe laser frequency. The yield curves, or photofragment excitation (PHOFEX) spectra, exhibit sharp steps spaced by the CO rotational term values. PHOFEX yield curves combined with the distribution data demonstrate that the ketene absorption cross section is constant within 10% over the 0–1000 cm−1 range of the PHOFEX spectra. PHOFEX curves up to 200 cm−1 and rotational state distributions for singlet methylene at 50, 100, and 170 cm−1 above its threshold are in good agreement with phase space theory (PST) calculations. The lowest energy methylene rotational states of + and − symmetry are formed in the ratio predicted by phase space theory at all energies. States of mixed singlet/triplet parentage are populated with equal probability for triplet characters ranging from 30% to 70%. For energies greater than 300 cm−1 above the threshold, the 1CH2 rotational distribution is substantially colder than the statistical distribution given by PST. These differences increase with excess energy above the singlet threshold. In this energy range, the dynamics of motion between the transition state and separated product fragments is in neither the adiabatic nor the statistical limit though the data do suggest that motion may well be adiabatic for molecules fragmenting to yield the lowest energy rotational states of ortho methylene.

1.
R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990), and references cited therein.
2.
H.
Reisler
and
C.
Wittig
,
Annu. Rev. Phys. Chem.
37
,
307
(
1986
).
3.
W. H.
Green
,
C. B.
Moore
, and
W. F.
Polik
,
Annu. Rev. Phys. Chem.
43
,
591
(
1992
).
4.
R. Schinke, Photodissociation Dynamics; Cambridge Monographs on Atomic, Molecular and Chemical Physics, Vol. 1 (Cambridge University, New York, 1993).
5.
C. X. W.
Qian
,
A.
Ogai
,
H.
Reisler
, and
C.
Wittig
,
J. Chem. Phys.
90
,
209
(
1989
).
6.
L. R.
Khundkar
,
J. L.
Knee
, and
A. H.
Zewail
,
J. Chem. Phys.
87
,
77
(
1987
).
7.
W. H.
Green
,
I.
Chia-Chen
, and
C. B.
Moore
,
Ber. Bunsenges. Phys. Chem.
92
,
389
(
1988
).
8.
I.
Chia-Chen
,
W. H.
Green
, and
C. B.
Moore
,
J. Chem. Phys.
89
,
314
(
1988
).
9.
W. H.
Green
,
A. H.
Mahoney
,
Q.-K.
Zheng
, and
C. B.
Moore
,
J. Chem. Phys.
94
,
1961
(
1991
).
10.
E. D.
Potter
,
M.
Gruebele
,
L. R.
Khundkar
, and
A. H.
Zewail
,
Chem. Phys. Lett.
164
,
463
(
1989
).
11.
S. K.
Kim
,
Y. S.
Choi
,
C. D.
Pibel
,
Q.-K.
Zheng
, and
C. B.
Moore
,
J. Chem. Phys.
94
,
1954
(
1991
).
12.
J. Peeters, S. Vanhaelemeersch, J. Van Hoeymissen, and R. Borms, Int. Acad. Publ. (1989).
13.
D. J.
Nesbitt
,
H.
Petek
,
M. F.
Foltz
,
S. V.
Filseth
,
D. J.
Bamford
, and
C. B.
Moore
,
J. Chem. Phys.
83
,
223
(
1985
).
14.
T. M.
Ticich
,
M. D.
Likar
,
H.-R.
Dubal
,
L. J.
Butler
, and
F. F.
Crim
,
J. Chem. Phys.
87
,
5820
(
1987
).
15.
N. F.
Scherer
and
A. H.
Zewail
,
J. Chem. Phys.
87
,
97
(
1987
).
16.
K.-H.
Gericke
,
H. G.
Gläser
,
C.
Maul
, and
F. J.
Comes
,
J. Chem. Phys.
92
,
411
(
1990
).
17.
X.
Luo
and
T. R.
Rizzo
,
J. Chem. Phys.
96
,
5129
(
1992
).
18.
A.
Sinha
,
R. L.
Vander Wal
, and
F. F.
Crim
,
J. Chem. Phys.
92
,
401
(
1990
).
19.
E. A. J.
Wannemacher
,
H.
Lin
, and
W. M.
Jackson
,
J. Phys. Chem.
94
,
6608
(
1990
).
20.
J.
Miyawaki
,
K.
Yamanouchi
, and
S.
Tsuchiya
,
Chem. Phys. Lett.
180
,
287
(
1991
).
21.
S. I.
Ionov
,
G. A.
Brucker
,
C.
Jaques
,
Y.
Chen
, and
C.
Wittig
,
J. Chem. Phys.
99
,
3420
(
1993
).
22.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
42
,
3281
(
1965
);
P.
Pechukas
,
C.
Rankin
, and
J. C.
Light
,
J. Chem. Phys.
44
,
794
(
1966
).,
J. Chem. Phys.
23.
C. E.
Klots
,
J. Phys. Chem.
75
,
1526
(
1971
);
C. E.
Klots
,
64
,
4269
(
1976
).,
J. Phys. Chem.
24.
M.
Quack
and
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
78
,
240
(
1974
);
M.
Quack
and
J.
Troe
,
79
,
170
(
1975
).,
Ber. Bunsenges. Phys. Chem.
25.
M.
Quack
and
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
79
,
469
(
1975
).
26.
J.
Troe
,
J. Chem. Phys.
25
,
226
(
1981
);
J.
Troe
,
79
,
6017
(
1983
).,
J. Chem. Phys.
27.
L.
Brouwer
,
C. J.
Cobos
,
J.
Troe
,
H.-R.
Dübal
, and
F. F.
Crim
,
J. Chem. Phys.
86
,
6171
(
1987
).
28.
C.
Wittig
,
I.
Nadler
,
H.
Reisler
,
J.
Catanzarite
, and
G.
Radhakrishnan
,
J. Chem. Phys.
83
,
5581
(
1985
).
29.
R. A.
Marcus
,
J. Chem. Phys.
85
,
5035
(
1986
).
30.
R. A.
Marcus
,
Chem. Phys. Lett.
144
,
208
(
1988
).
31.
D. M.
Wardlaw
and
R. A.
Marcus
,
Adv. Chem. Phys.
70
,
231
(
1988
).
32.
S. J.
Klippenstein
,
L. R.
Khundkar
,
A. H.
Zewail
, and
R. A.
Marcus
,
J. Chem. Phys.
89
,
4761
(
1988
).
33.
S. J.
Klippenstein
and
R. A.
Marcus
,
J. Phys. Chem.
98
,
3105
(
1988
).
34.
S. J.
Klippenstein
and
R. A.
Marcus
,
J. Chem. Phys.
91
,
2280
(
1989
).
35.
J.
Yu
and
S. J.
Klippenstein
,
J. Phys. Chem.
95
,
9882
(
1991
).
36.
S. J.
Klippenstein
and
T.
Radivoyevitch
,
J. Chem. Phys.
99
,
3644
(
1993
).
37.
I.
Garcia-Moreno
and
C. B.
Moore
,
J. Chem. Phys.
99
,
6429
(
1993
).
38.
R. L.
Nutall
,
A. H.
Laufer
, and
M. V.
Kilday
,
Thermodynamics
4
,
167
(
1971
).
39.
E. R.
Lovejoy
and
C. B.
Moore
,
J. Chem. Phys.
98
,
7846
(
1993
).
40.
I.
Garcia-Moreno
,
E. R.
Lovejoy
,
C. B.
Moore
, and
G.
Duxbury
,
J. Chem. Phys.
98
,
873
(
1993
).
41.
C. H.
Greene
and
R. N.
Zare
,
J. Chem. Phys.
78
,
6741
(
1983
).
42.
See AIP document no. PAPS JCPSA-100-8890-3 for 3 pages of tables.
Order by PAPS number and journal reference from American Institute of Physics, Physics Auxilliary Publication Service, Carolyn Gehlbach 500 Sunnyside Boulevard, Woodbury, New York 11797-2999. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
43.
H.
Petek
,
D. J.
Nesbitt
,
D. C.
Darwin
, and
C. B.
Moore
,
J. Chem. Phys.
86
,
1172
(
1987
).
44.
G.
Herzberg
and
J. W. C.
Johns
,
Proc. R. Soc. London Ser. A
295
,
107
(
1966
).
45.
J. K. G. Watson, Vibrational Spectra and Structures, edited by J. R. Dur ing (Elsevier, New York, 1977), Vol. 6.
46.
H.
Petek
,
D. J.
Nesbitt
,
C. B.
Moore
,
F. W.
Birss
, and
D. A.
Ramsay
,
J. Chem. Phys.
86
,
1189
(
1987
).
47.
G.
Duxbury
and
Ch.
Jungen
,
Mol. Phys.
63
,
981
(
1988
).
48.
W. D.
Allen
and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
329
(
1988
).
49.
J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, The Molecular Theory of Gases and Liquids (Wiley: New York, 1954).
50.
E. I.
Dashevskaya
,
E. E.
Nikitin
, and
J.
Troe
,
J. Chem. Phys.
97
,
3318
(
1992
).
51.
A. I.
Maergoiz
,
E. E.
Nikitin
, and
J.
Troe
,
J. Chem. Phys.
95
,
5117
(
1991
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.