Piezoelectric, pyroelectric, and ferroelectric materials have attracted tremendous attention owing to their potential applications in nonvolatile memories, logic devices, photodetectors, sensors, actuators, transducers, and energy harvesting devices. In recent years, a range of two-dimensional (2D) layered materials have been experimentally confirmed or theoretically predicted to be piezoelectric, pyroelectric, or ferroelectric.1–9 Compared to their bulk counterparts, 2D piezoelectric, pyroelectric, and ferroelectric materials exhibit many intriguing properties, such as excellent size scaling, tunable bandgap, negative piezoelectric coefficient, and high mechanical flexibility.1–9 Furthermore, the stackable nature of 2D layered materials makes them promising building blocks for designing functional heterostructures, where the 2D layers can be integrated with conventional piezoelectric, pyroelectric, and ferroelectric oxides and polymers. These new materials and heterostructures enable a wide range of emerging applications, including nonvolatile memories, steep slope transistors, programmable junctions, charge and pressure sensors, photodiodes, and smart optical filters.

The Special Topic “2D piezoelectrics, pyroelectrics, and ferroelectrics” in the Journal of Applied Physics offers an overview of the most active research areas currently under investigation in the broad field of 2D piezoelectrics, pyroelectrics, and ferroelectrics. In particular, featured topics include van der Waals (vdW) piezoelectric/pyroelectric/ferroelectric materials,10–13 correlated oxide nanowires,14 and 2D/ferroelectric hybrid stacks,15,16 as well as advanced electronic and pyroelectric devices based on these materials.12,15,16

A variety of vdW piezoelectric, pyroelectric, and ferroelectric materials have been discovered in recent years, including group III chalcogenides,17–20 transition-metal thiophosphate,21,22 group IV monochalcogenides,23–25 distorted transition-metal dichalcogenides,26,27 oxy-chalcogenides,28 and layered perovskite.29 Many of them can retain piezoelectricity, pyroelectricity, or ferroelectricity even down to 1 unit-cell thickness.18,23,24 In this Special Topic, O'Hara et al. investigated the effect of various metal contacts on the scaling of 2D ferroelectrics. They found that metal contacts can facilitate the stabilization of the ferroelectric phase, enabling aggressive scaling of 2D ferroelectrics.13 As a recently discovered vdW ferroelectric, α-In2Se3 exhibits inter-correlated in-plane and out-of-plane polarization.17,18 Unlike traditional ferroelectric materials, which are usually insulators, α-In2Se3 is a semiconductor with a band gap of 1.36 eV (bulk). This semiconducting nature allows α-In2Se3 to serve as the conducting channel, the photo absorber, and the ferroelectric storage layer concurrently.30 Logic transistors and multifunctional devices based on α-In2Se3 have been demonstrated.30,31 In this collection, Zheng et al. demonstrated the synthesis of millimeter-scale In2Se3 with a thickness of ∼3 nm by physical vapor deposition and developed asymmetric ferroelectric semiconductor junctions based on ultrathin In2Se3 films.12 CuInP2S6 (CIPS) is a vdW ferroelectric material with a 2.9 eV band gap (bulk) and out-of-plane polarization.32 CIPS exhibits giant negative piezo-response and possesses unconventional quadruple-well potential.33,34 Various electronic devices have been demonstrated based on CIPS, including nonvolatile memories,35,36 reconfigurable logic devices,37 and ferroelectric tunneling junctions (FTJs).21 Kong et al. reported the photocatalytic activity of ferroelectric CIPS for the chemical deposition of silver nanostructures (AgNSs).11 In addition, Parker et al. discussed the recent developments in van der Waals ferroelectric device technologies.38 Lai provided an overview of the research in vdW ferroelectric materials, spanning from theoretical calculation, material synthesis, sample characterization, to device implementation.39 

Furthermore, extensive research has been carried out on the heterostructures of 2D materials integrated with piezoelectric/pyroelectric/ferroelectric materials, leveraging their interfacial synergy to realize a wide range of electrical, optical, thermal, and mechanical applications. The atomic thin nature of 2D material allows for effective tuning of carrier densities through the polarization in ferroelectric materials, as well as substantial crystal deformation through the use of piezoelectric materials. A wide range of ferroelectrics have been integrated with 2D materials, including perovskites such as Pb(Zr,Ti)O3 (PZT), BaTiO3, and BiFeO3,40–59 doped hafnium oxides,60–66 and ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) or P(VDF-TrFE).67–88 In this Special Topic, Chen et al. studied the effect of remote optical phonon scattering on the magneto-transport of graphene field-effect transistor back-gated by ferroelectric Ba0.6Sr0.4TiO3 thin films and demonstrated field effect mobility up to 23 000 cm2 V−1 s−1.16 Utilizing 2D/ferroelectric heterostructures, a variety of electronic devices including nonvolatile memories, steep-slope field-effect transistors, and FTJs have been demonstrated.47–50,59,61–66,68–72 The heterostructures of 2D/piezoelectrics and 2D/pyroelectrics also enable the development of pressure sensors and infrared bolometers.75,77,89 Mbisike et al. demonstrated an integrated pyroelectric device based on WSe2 and PZT, which significantly amplifies the output current as compared to the standalone device based on PZT only.15 

In summary, 2D piezoelectric, pyroelectric, and ferroelectric materials open up a new paradigm for electronic, photonic, and mechanic devices, which bring in strong potentials in a variety of applications. This collection of papers on 2D piezoelectric, pyroelectric, and ferroelectric materials provides a timely forum for investigators to share their new results and provide their assessment of the new technologies based on these materials. We hope the “2D piezoelectrics, pyroelectrics, and ferroelectrics” Special Topic will inspire many scientists and accelerate the expansion of this research field.

The guest editors sincerely thank the staff and editors of the Journal of Applied Physics for putting this Special Topic together and all the authors and reviewers for their contributions. Wenjuan Zhu would like to acknowledge the support from the Semiconductor Research Corporation (SRC) under Grant No. SRC 2021-LM-3042. Xia Hong would like to acknowledge the support from the National Science Foundation (NSF) under Grant No. DMR-2118828.

1.
C. J.
Cui
,
F.
Xue
,
W. J.
Hu
, and
L. J.
Li
, “
Two-dimensional materials with piezoelectric and ferroelectric functionalities
,”
npj 2D Mater. Appl.
2
,
18
(
2018
).
2.
M. H.
Wu
and
P.
Jena
, “
The rise of two-dimensional van der Waals ferroelectrics
,”
WIREs Comput. Mol. Sci.
8
,
e1365
(
2018
).
3.
M.
Osada
and
T.
Sasaki
, “
The rise of 2D dielectrics/ferroelectrics
,”
APL Mater.
7
(
12
),
120902
(
2019
).
4.
H.
Ryu
,
K.
Xu
,
D.
Li
,
X.
Hong
, and
W.
Zhu
, “
Empowering 2D nanoelectronics via ferroelectricity
,”
Appl. Phys. Lett.
117
(
8
),
080503
(
2020
).
5.
F.
Xue
,
J. H.
He
, and
X. X.
Zhang
, “
Emerging van der Waals ferroelectrics: Unique properties and novel devices
,”
Appl. Phys. Rev.
8
(
2
),
021316
(
2021
).
6.
M. H.
Wu
, “
Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities
,”
ACS Nano
15
(
6
),
9229
9237
(
2021
).
7.
J.
Shang
,
X.
Tang
, and
L. Z.
Kou
, “
Two dimensional ferroelectrics: Candidate for controllable physical and chemical applications
,”
WIREs Comput. Mol. Sci.
11
(
2
),
e1496
(
2021
).
8.
R. J.
Bian
,
C. C.
Li
,
Q.
Liu
,
G. M.
Cao
,
Q. D.
Fu
,
P.
Meng
,
J. D.
Zhou
,
F. C.
Liu
, and
Z.
Liu
, “
Recent progress in the synthesis of novel two-dimensional van der Waals materials
,”
Natl. Sci. Rev.
9
(
5
),
nwab164
(
2022
).
9.
C. S.
Wang
,
L.
You
,
D.
Cobden
, and
J. L.
Wang
, “
Towards two-dimensional van der Waals ferroelectrics
,”
Nat. Mater.
(published online) (
2023
).
10.
R.
Sereika
,
R.
Žaltauskas
,
S.
Varnagiris
,
M.
Urbonavičius
,
F.
Liu
,
Y.
Ding
, and
D.
Milčius
, “
On the structure of SbTeI
,”
J. Appl. Phys.
132
(
1
),
015106
(
2022
).
11.
F.
Kong
,
L.
Zhang
,
T.
Cong
,
Z.
Wu
,
K.
Liu
,
C.
Sun
,
L.
Pan
, and
D.
Li
, “
Tunable photochemical deposition of silver nanostructures on layered ferroelectric CuInP2S6
,”
J. Appl. Phys.
132
(
4
),
044103
(
2022
).
12.
D.
Zheng
,
M.
Si
,
S.-C.
Chang
,
N.
Haratipour
,
Z.
Chen
,
A.
Charnas
,
S.
Huang
,
K.
Wang
,
L.
Dou
,
X.
Xu
,
U. E.
Avci
, and
P. D.
Ye
, “
Ultrathin two-dimensional van der Waals asymmetric ferroelectric semiconductor junctions
,”
J. Appl. Phys.
132
(
5
),
054101
(
2022
).
13.
A.
O'Hara
,
L.
Tao
,
S. M.
Neumayer
,
P.
Maksymovych
,
N.
Balke
, and
S. T.
Pantelides
, “
Effects of thin metal contacts on few-layer van der Waals ferrielectric CuInP2S6
,”
J. Appl. Phys.
132
(
11
),
114102
(
2022
).
14.
M.
Dey
,
S.
Chowdhury
,
S.
Kumar
, and
A.
Kumar Singh
, “
Quantum confinement effect on defect level of hydrogen doped rutile VO2 nanowires
,”
J. Appl. Phys.
131
(
23
),
235702
(
2022
).
15.
S. C.
Mbisike
,
L.
Eckart
,
J. W.
Phair
,
P.
Lomax
, and
R.
Cheung
, “
Amplification of pyroelectric device with WSe2 field effect transistor and ferroelectric gating
,”
J. Appl. Phys.
131
(
14
),
144101
(
2022
).
16.
H.
Chen
,
T.
Li
,
Y.
Hao
,
A.
Rajapitamahuni
,
Z.
Xiao
,
S.
Schoeche
,
M.
Schubert
, and
X.
Hong
, “
Remote surface optical phonon scattering in ferroelectric Ba0.6Sr0.4TiO3 gated graphene
,”
J. Appl. Phys.
132
(
15
),
154301
(
2022
).
17.
W. J.
Ding
,
J. B.
Zhu
,
Z.
Wang
,
Y. F.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z. Y.
Zhang
, and
W. G.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
14956
(
2017
).
18.
C.
Cui
,
W.-J.
Hu
,
X.
Yan
,
C.
Addiego
,
W.
Gao
,
Y.
Wang
,
Z.
Wang
,
L.
Li
,
Y.
Cheng
,
P.
Li
,
X.
Zhang
,
H. N.
Alshareef
,
T.
Wu
,
W.
Zhu
,
X.
Pan
, and
L.-J.
Li
, “
Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3
,”
Nano Lett.
18
(
2
),
1253
1258
(
2018
).
19.
H.
Hu
,
Y.
Sun
,
M.
Chai
,
D.
Xie
,
J.
Ma
, and
H.
Zhu
, “
Room-temperature out-of-plane and in-plane ferroelectricity of two-dimensional β-InSe nanoflakes
,”
Appl. Phys. Lett.
114
(
25
),
252903
(
2019
).
20.
W.
Xue
,
Q.
Jiang
,
F.
Wang
,
R.
He
,
R.
Pang
,
H.
Yang
,
P.
Wang
,
R.
Yang
,
Z.
Zhong
,
T.
Zhai
, and
X.
Xu
, “
Discovery of robust ferroelectricity in 2D defective semiconductor α-Ga2Se3
,”
Small
18
(
8
),
2105599
(
2022
).
21.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
, “
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
,”
Nat. Commun.
7
(
1
),
12357
(
2016
).
22.
A.
Belianinov
,
Q.
He
,
A.
Dziaugys
,
P.
Maksymovych
,
E.
Eliseev
,
A.
Borisevich
,
A.
Morozovska
,
J.
Banys
,
Y.
Vysochanskii
, and
S. V.
Kalinin
, “
CuInP2S6 room temperature layered ferroelectric
,”
Nano Lett.
15
(
6
),
3808
3814
(
2015
).
23.
K.
Chang
,
J.
Liu
,
H.
Lin
,
N.
Wang
,
K.
Zhao
,
A.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X.
Hu
,
W.
Duan
,
Q.
Zhang
,
L.
Fu
,
Q. K.
Xue
,
X.
Chen
, and
S. H.
Ji
, “
Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
,”
Science
353
(
6296
),
274
278
(
2016
).
24.
Y.
Bao
,
P.
Song
,
Y.
Liu
,
Z.
Chen
,
M.
Zhu
,
I.
Abdelwahab
,
J.
Su
,
W.
Fu
,
X.
Chi
,
W.
Yu
,
W.
Liu
,
X.
Zhao
,
Q. H.
Xu
,
M.
Yang
, and
K. P.
Loh
, “
Gate-tunable in-plane ferroelectricity in few-layer SnS
,”
Nano Lett.
19
(
8
),
5109
5117
(
2019
).
25.
K.
Chang
,
F.
Küster
,
B. J.
Miller
,
J.-R.
Ji
,
J.-L.
Zhang
,
P.
Sessi
,
S.
Barraza-Lopez
, and
S. S. P.
Parkin
, “
Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature
,”
Nano Lett.
20
(
9
),
6590
6597
(
2020
).
26.
Z.
Fei
,
W.
Zhao
,
T. A.
Palomaki
,
B.
Sun
,
M. K.
Miller
,
Z.
Zhao
,
J.
Yan
,
X.
Xu
, and
D. H.
Cobden
, “
Ferroelectric switching of a two-dimensional metal
,”
Nature
560
(
7718
),
336
339
(
2018
).
27.
P.
Sharma
,
F.-X.
Xiang
,
D.-F.
Shao
,
D.
Zhang
,
E. Y.
Tsymbal
,
A. R.
Hamilton
, and
J.
Seidel
, “
A room-temperature ferroelectric semimetal
,”
Sci. Adv.
5
(
7
),
eaax5080
(
2019
).
28.
T.
Ghosh
,
M.
Samanta
,
A.
Vasdev
,
K.
Dolui
,
J.
Ghatak
,
T.
Das
,
G.
Sheet
, and
K.
Biswas
, “
Ultrathin free-standing nanosheets of Bi2O2Se: Room temperature ferroelectricity in self-assembled charged layered heterostructure
,”
Nano Lett.
19
(
8
),
5703
5709
(
2019
).
29.
L.
You
,
F.
Liu
,
H.
Li
,
Y.
Hu
,
S.
Zhou
,
L.
Chang
,
Y.
Zhou
,
Q.
Fu
,
G.
Yuan
,
S.
Dong
,
H. J.
Fan
,
A.
Gruverman
,
Z.
Liu
, and
J.
Wang
, “
In-plane ferroelectricity in thin flakes of van der Waals hybrid perovskite
,”
Adv. Mater.
30
(
51
),
1803249
(
2018
).
30.
K.
Xu
,
W.
Jiang
,
X.
Gao
,
Z.
Zhao
,
T.
Low
, and
W.
Zhu
, “
Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors
,”
Nanoscale
12
(
46
),
23488
23496
(
2020
).
31.
M. W.
Si
,
A. K.
Saha
,
S. J.
Gao
,
G.
Qiu
,
J. K.
Qin
,
Y. Q.
Duan
,
J.
Jian
,
C.
Niu
,
H. Y.
Wang
,
W. Z.
Wu
,
S. K.
Gupta
, and
P. D. D.
Ye
, “
A ferroelectric semiconductor field-effect transistor
,”
Nat. Electron.
2
(
12
),
580
586
(
2019
).
32.
M.
Si
,
A. K.
Saha
,
P. Y.
Liao
,
S.
Gao
,
S. M.
Neumayer
,
J.
Jian
,
J.
Qin
,
N.
Balke Wisinger
,
H.
Wang
,
P.
Maksymovych
,
W.
Wu
,
S. K.
Gupta
, and
P. D.
Ye
, “
Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration
,”
ACS Nano
13
(
8
),
8760
8765
(
2019
).
33.
L.
You
,
Y.
Zhang
,
S.
Zhou
,
A.
Chaturvedi
,
S. A.
Morris
,
F.
Liu
,
L.
Chang
,
D.
Ichinose
,
H.
Funakubo
,
W.
Hu
,
T.
Wu
,
Z.
Liu
,
S.
Dong
, and
J.
Wang
, “
Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric
,”
Sci. Adv.
5
(
4
),
eaav3780
(
2019
).
34.
J. A.
Brehm
,
S. M.
Neumayer
,
L.
Tao
,
A.
O'Hara
,
M.
Chyasnavichus
,
M. A.
Susner
,
M. A.
McGuire
,
S. V.
Kalinin
,
S.
Jesse
,
P.
Ganesh
,
S. T.
Pantelides
,
P.
Maksymovych
, and
N.
Balke
, “
Tunable quadruple-well ferroelectric van der Waals crystals
,”
Nat. Mater.
19
(
1
),
43
(
2020
).
35.
Z.
Zhao
,
K.
Xu
,
H.
Ryu
, and
W.
Zhu
, “
Strong temperature effect on the ferroelectric properties of CuInP2S6 and its heterostructures
,”
ACS Appl. Mater. Interfaces
12
(
46
),
51820
51826
(
2020
).
36.
M.
Si
,
P.-Y.
Liao
,
G.
Qiu
,
Y.
Duan
, and
P. D.
Ye
, “
Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure
,”
ACS Nano
12
(
7
),
6700
6705
(
2018
).
37.
Z.
Zhao
,
S.
Rakheja
, and
W.
Zhu
, “
Nonvolatile reconfigurable 2D Schottky barrier transistors
,”
Nano Lett.
21
(
21
),
9318
9324
(
2021
).
38.
J.
Parker
and
Y.
Gu
, “
Van der Waals ferroelectrics: Progress and an outlook for future research directions
,”
J. Appl. Phys.
132
(
16
),
160901
(
2022
).
39.
K. Lai, “Spontaneous polarization in van der Waals materials: Two-dimensional ferroelectrics and device applications,”
J. Appl. Phys.
132(16), 121102 (2022).
40.
X.
Hong
,
A.
Posadas
,
K.
Zou
,
C. H.
Ahn
, and
J.
Zhu
, “
High mobility few layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides
,”
Phys. Rev. Lett.
102
(
13
),
136808
(
2009
).
41.
A.
Rajapitamahuni
,
J.
Hoffman
,
C. H.
Ahn
, and
X.
Hong
, “
Examining graphene field effect sensors for ferroelectric thin film studies
,”
Nano Lett.
13
(
9
),
4374
4379
(
2013
).
42.
W.
Lee
,
O.
Kahya
,
C. T.
Toh
,
B.
Ozyilmaz
, and
J. H.
Ahn
, “
Flexible graphene-PZT ferroelectric nonvolatile memory
,”
Nanotechnology
24
(
47
),
475202
(
2013
).
43.
W. C.
Tan
,
W. H.
Shih
, and
Y. F.
Chen
, “
A highly sensitive graphene-organic hybrid photodetector with a piezoelectric substrate
,”
Adv. Funct. Mater.
24
(
43
),
6818
6825
(
2014
).
44.
M. H.
Yusuf
,
B.
Nielsen
,
M.
Dawber
, and
X.
Du
, “
Extrinsic and intrinsic charge trapping at the graphene/ferroelectric interface
,”
Nano Lett.
14
(
9
),
5437
5444
(
2014
).
45.
C.
Ma
,
Y.
Gong
,
R.
Lu
,
E.
Brown
,
B.
Ma
,
J.
Li
, and
J.
Wu
, “
Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates
,”
Nanoscale
7
,
18489
18497
(
2015
).
46.
C. J.
Zhou
,
X. S.
Wang
,
S.
Raju
,
Z. Y.
Lin
,
D.
Villaroman
,
B. L.
Huang
,
H. L. W.
Chan
,
M. S.
Chan
, and
Y.
Chai
, “
Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT
,”
Nanoscale
7
(
19
),
8695
8700
(
2015
).
47.
D.
Li
,
X.
Huang
,
Q.
Wu
,
L.
Zhang
,
Y.
Lu
, and
X.
Hong
, “
Ferroelectric domain control of nonlinear light polarization in MoS2 via PbZr0.2Ti0.8O3 thin films and free-standing membranes
,”
Adv. Mater.
35
(
9
),
2208825
(
2023
).
48.
A.
Lipatov
,
P.
Sharma
,
A.
Gruverman
, and
A.
Sinitskii
, “
Optoelectrical molybdenum disulfide (MoS2)-ferroelectric memories
,”
ACS Nano
9
(
8
),
8089
8098
(
2015
).
49.
C.
Ko
,
Y.
Lee
,
Y.
Chen
,
J.
Suh
,
D.
Fu
,
A.
Suslu
,
S.
Lee
,
J. D.
Clarkson
,
H. S.
Choe
,
S.
Tongay
,
R.
Ramesh
, and
J.
Wu
, “
Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory
,”
Adv. Mater.
28
(
15
),
2923
2930
(
2016
).
50.
W.
Hou
,
A.
Azizimanesh
,
A.
Sewaket
,
T.
Pena
,
C.
Watson
,
M.
Liu
,
H.
Askari
, and
S. M.
Wu
, “
Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor
,”
Nat. Nanotechnol.
14
(
7
),
668
(
2019
).
51.
Z. Y.
Lu
,
C.
Serrao
,
A. I.
Khan
,
L.
You
,
J. C.
Wong
,
Y.
Ye
,
H. Y.
Zhu
,
X.
Zhang
, and
S.
Salahuddinl
, “
Nonvolatile MoS2 field effect transistors directly gated by single crystalline epitaxial ferroelectric
,”
Appl. Phys. Lett.
111
(
2
),
023104
(
2017
).
52.
X. W.
Zhang
,
D.
Xie
,
J. L.
Xu
,
Y. L.
Sun
,
X.
Li
,
C.
Zhang
,
R. X.
Dai
,
Y. F.
Zhao
,
X. M.
Li
,
X.
Li
, and
H. W.
Zhu
, “
Mos2 field-effect transistors with lead zirconate-titanate ferroelectric gating
,”
IEEE Electron Device Lett.
36
(
8
),
784
786
(
2015
).
53.
S. P.
Rogers
,
R.
Xu
,
S.
Pandya
,
L. W.
Martin
, and
M.
Shim
, “
Slow conductance relaxation in graphene–ferroelectric field-effect transistors
,”
J. Phys. Chem. C
121
(
13
),
7542
7548
(
2017
).
54.
A.
Lipatov
,
A.
Fursina
,
T. H.
Vo
,
P.
Sharma
,
A.
Gruverman
, and
A.
Sinitskii
, “
Polarization-dependent electronic transport in graphene/Pb(Zr,Ti)O3 ferroelectric field-effect transistors
,”
Adv. Electron. Mater.
3
(
7
),
1700020
(
2017
).
55.
H. W.
Shin
and
J. Y.
Son
, “
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
,”
Electron. Mater. Lett.
14
(
1
),
59
63
(
2018
).
56.
L.
Xie
,
X.
Chen
,
Z.
Dong
,
Q.
Yu
,
X.
Zhao
,
G.
Yuan
,
Z.
Zeng
,
Y.
Wang
, and
K.
Zhang
, “
Nonvolatile photoelectric memory induced by interfacial charge at a ferroelectric PZT-gated black phosphorus transistor
,”
Adv. Electron. Mater.
5
(
8
),
1900458
(
2019
).
57.
A.
Lipatov
,
T.
Li
,
N. S.
Vorobeva
,
A.
Sinitskii
, and
A.
Gruverman
, “
Nanodomain engineering for programmable ferroelectric devices
,”
Nano Lett.
19
(
5
),
3194
3198
(
2019
).
58.
Z. D.
Luo
,
X.
Xia
,
M. M.
Yang
,
N. R.
Wilson
,
A.
Gruverman
, and
M.
Alexe
, “
Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors
,”
ACS Nano
14
(
1
),
746
754
(
2020
).
59.
J.
Song
,
Y.
Qi
,
Z.
Xiao
,
K.
Wang
,
D.
Li
,
S.-H.
Kim
,
A. I.
Kingon
,
A. M.
Rappe
, and
X.
Hong
, “
Domain wall enabled steep slope switching in MoS2 transistors towards hysteresis-free operation
,”
npj 2D Mater. Appl.
6
(
1
),
77
(
2022
).
60.
W. C.
Yap
,
H.
Jiang
,
J.
Liu
,
Q.
Xia
, and
W.
Zhu
, “
Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide
,”
Appl. Phys. Lett.
111
(
1
),
013103
(
2017
).
61.
Z.
Yu
,
H.
Wang
,
W.
Li
,
S.
Xu
,
X.
Song
,
S.
Wang
,
P.
Wang
,
P.
Zhou
,
Y.
Shi
,
Y.
Chai
, and
X.
Wang
, “
Negative capacitance 2D MoS2 transistors with sub-60 mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free
,” in
2017 IEEE International Electron Devices Meeting (IEDM)
,
2–6 December 2017
(IEEE,
2017
), pp.
23.6.1
23.6.4
.
62.
M.
Si
,
C.
Jiang
,
C.
Su
,
Y.
Tang
,
L.
Yang
,
W.
Chung
,
M. A.
Alam
, and
P. D.
Ye
, “
Sub-60 mV/dec ferroelectric HZO MoS2 negative capacitance field-effect transistor with internal metal gate: The role of parasitic capacitance
,” in
2017 IEEE International Electron Devices Meeting (IEDM)
,
2–6 December 2017
(IEEE,
2017
), pp.
23.5.1
23.5.4
.
63.
F. A.
McGuire
,
Y. C.
Lin
,
K.
Price
,
G. B.
Rayner
,
S.
Khandelwal
,
S.
Salahuddin
, and
A. D.
Franklin
, “
Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors
,”
Nano Lett.
17
(
8
),
4801
4806
(
2017
).
64.
M. W.
Si
,
C. J.
Su
,
C. S.
Jiang
,
N. J.
Conrad
,
H.
Zhou
,
K. D.
Maize
,
G.
Qiu
,
C. T.
Wu
,
A.
Shakouri
,
M. A.
Alam
, and
P. D.
Ye
, “
Steep-slope hysteresis-free negative capacitance MoS2 transistors
,”
Nat. Nanotechnol.
13
(
1
),
24
(
2018
).
65.
M.
Si
,
C.
Jiang
,
W.
Chung
,
Y.
Du
,
M. A.
Alam
, and
P. D.
Ye
, “
Steep-slope WSe2 negative capacitance field-effect transistor
,”
Nano Lett.
18
(
6
),
3682
3687
(
2018
).
66.
A.
Nourbakhsh
,
A.
Zubair
,
S.
Joglekar
,
M.
Dresselhaus
, and
T.
Palacios
, “
Subthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack
,”
Nanoscale
9
(
18
),
6122
6127
(
2017
).
67.
Y.
Zheng
,
G.-X.
Ni
,
C.-T.
Toh
,
M.-G.
Zeng
,
S.-T.
Chen
,
K.
Yao
, and
B.
Ozyilmaz
, “
Gate-controlled nonvolatile graphene-ferroelectric memory
,”
Appl. Phys. Lett.
94
,
163505
(
2009
).
68.
H. S.
Lee
,
S. W.
Min
,
M. K.
Park
,
Y. T.
Lee
,
P. J.
Jeon
,
J. H.
Kim
,
S.
Ryu
, and
S.
Im
, “
Mos2 nanosheets for top-gate nonvolatile memory transistor channel
,”
Small
8
(
20
),
3111
3115
(
2012
).
69.
Z. Y.
Xiao
,
J. F.
Song
,
D. K.
Ferry
,
S.
Ducharme
, and
X.
Hong
, “
Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS2
,”
Phys. Rev. Lett.
118
(
23
),
236801
(
2017
).
70.
X.
Wang
,
P.
Wang
,
J.
Wang
,
W.
Hu
,
X.
Zhou
,
N.
Guo
,
H.
Huang
,
S.
Sun
,
H.
Shen
,
T.
Lin
,
M.
Tang
,
L.
Liao
,
A.
Jiang
,
J.
Sun
,
X.
Meng
,
X.
Chen
,
W.
Lu
, and
J.
Chu
, “
Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics
,”
Adv. Mater.
27
(
42
),
6575
6581
(
2015
).
71.
D.
Li
,
X.
Wang
,
Y.
Chen
,
S.
Zhu
,
F.
Gong
,
G.
Wu
,
C.
Meng
,
L.
Liu
,
L.
Wang
,
T.
Lin
,
S.
Sun
,
H.
Shen
,
X.
Wang
,
W.
Hu
,
J.
Wang
,
J.
Sun
,
X.
Meng
, and
J.
Chu
, “
The ambipolar evolution of a high-performance WSe2 transistor assisted by a ferroelectric polymer
,”
Nanotechnology
29
(
10
),
105202
(
2018
).
72.
G.
Wu
,
B.
Tian
,
L.
Liu
,
W.
Lv
,
S.
Wu
,
X.
Wang
,
Y.
Chen
,
J.
Li
,
Z.
Wang
,
S.
Wu
,
H.
Shen
,
T.
Lin
,
P.
Zhou
,
Q.
Liu
,
C.
Duan
,
S.
Zhang
,
X.
Meng
,
S.
Wu
,
W.
Hu
,
X.
Wang
,
J.
Chu
, and
J.
Wang
, “
Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains
,”
Nat. Electron.
3
(
1
),
43
50
(
2020
).
73.
D. W.
Li
,
Z. Y.
Xiao
,
S.
Mu
,
F.
Wang
,
Y.
Liu
,
J. F.
Song
,
X.
Huang
,
L. J.
Jiang
,
J.
Xiao
,
L.
Liu
,
S.
Ducharme
,
B.
Cui
,
X.
Hong
,
L.
Jiang
,
J. F.
Silvain
, and
Y. F.
Lu
, “
A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals
,”
Nano Lett.
18
(
3
),
2021
2032
(
2018
).
74.
G.
Wu
,
X.
Wang
,
P.
Wang
,
H.
Huang
,
Y.
Chen
,
S.
Sun
,
H.
Shen
,
T.
Lin
,
J.
Wang
,
S.
Zhang
,
L.
Bian
,
J.
Sun
,
X.
Meng
, and
J.
Chu
, “
Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer
,”
Nanotechnology
27
(
36
),
364002
(
2016
).
75.
W.
Park
,
J. H.
Yang
,
C. G.
Kang
,
Y. G.
Lee
,
H. J.
Hwang
,
C.
Cho
,
S. K.
Lim
,
S. C.
Kang
,
W. K.
Hong
,
S. K.
Lee
,
S.
Lee
, and
B. H.
Lee
, “
Characteristics of a pressure sensitive touch sensor using a piezoelectric PVDF-TrFE/MoS2 stack
,”
Nanotechnology
24
(
47
),
475501
(
2013
).
76.
Y. T.
Lee
,
H.
Kwon
,
J. S.
Kim
,
H.-H.
Kim
,
Y. J.
Lee
,
J. A.
Lim
,
Y.-W.
Song
,
Y.
Yi
,
W.-K.
Choi
,
D. K.
Hwang
, and
S.
Im
, “
Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer
,”
ACS Nano
9
(
10
),
10394
10401
(
2015
).
77.
J. H.
Yang
,
H. J.
Hwang
,
S. C.
Kang
, and
B. H.
Lee
, “
Sensitivity improvement of graphene/Al2O3/PVDF–TrFE stacked touch device through Al seed assisted dielectric scaling
,”
Microelectron. Eng.
147
,
79
84
(
2015
).
78.
L.
Lv
,
F.
Zhuge
,
F.
Xie
,
X.
Xiong
,
Q.
Zhang
,
N.
Zhang
,
Y.
Huang
, and
T.
Zhai
, “
Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization
,”
Nat. Commun.
10
(
1
),
3331
(
2019
).
79.
H.
Huang
,
X.
Wang
,
P.
Wang
,
G.
Wu
,
Y.
Chen
,
C.
Meng
,
L.
Liao
,
J.
Wang
,
W.
Hu
,
H.
Shen
,
T.
Lin
,
J.
Sun
,
X.
Meng
,
X.
Chen
, and
J.
Chu
, “
Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector
,”
RSC Adv.
6
(
90
),
87416
87421
(
2016
).
80.
F. A.
McGuire
,
Z. H.
Cheng
,
K.
Price
, and
A. D.
Franklin
, “
Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer
,”
Appl. Phys. Lett.
109
(
9
),
093101
(
2016
).
81.
G.-X.
Ni
,
Y.
Zheng
,
S.
Bae
,
C. Y.
Tan
,
O.
Kahya
,
J.
Wu
,
B. H.
Hong
,
K.
Yao
, and
B.
Özyilmaz
, “
Graphene–ferroelectric hybrid structure for flexible transparent electrodes
,”
ACS Nano
6
(
5
),
3935
3942
(
2012
).
82.
S.-H.
Bae
,
O.
Kahya
,
B. K.
Sharma
,
J.
Kwon
,
H. J.
Cho
,
B.
Özyilmaz
, and
J.-H.
Ahn
, “
Graphene-P(VDF-TrFE) multilayer film for flexible applications
,”
ACS Nano
7
(
4
),
3130
3138
(
2013
).
83.
X.
Wang
,
M.
Tang
,
Y.
Chen
,
G.
Wu
,
H.
Huang
,
X.
Zhao
,
B.
Tian
,
J.
Wang
,
S.
Sun
,
H.
Shen
,
T.
Lin
,
J.
Sun
,
X.
Meng
, and
J.
Chu
, “
Flexible graphene field effect transistor with ferroelectric polymer gate
,”
Opt. Quantum Electron.
48
(
7
),
345
(
2016
).
84.
X.
Wang
,
Y.
Chen
,
G.
Wu
,
D.
Li
,
L.
Tu
,
S.
Sun
,
H.
Shen
,
T.
Lin
,
Y.
Xiao
,
M.
Tang
,
W.
Hu
,
L.
Liao
,
P.
Zhou
,
J.
Sun
,
X.
Meng
,
J.
Chu
, and
J.
Wang
, “
Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating
,”
npj 2D Mater. Appl.
1
(
1
),
38
(
2017
).
85.
X. Q.
Liu
,
R. R.
Liang
,
G. Y.
Gao
,
C. F.
Pan
,
C. S.
Jiang
,
Q.
Xu
,
J.
Luo
,
X. M.
Zou
,
Z. Y.
Yang
,
L.
Liao
, and
Z. L.
Wang
, “
MoS2 negative-capacitance field-effect transistors with subthreshold swing below the physics limit
,”
Adv. Mater.
30
(
28
),
1800932
(
2018
).
86.
Y.
Chen
,
Y.
Zhou
,
F.
Zhuge
,
B.
Tian
,
M.
Yan
,
Y.
Li
,
Y.
He
, and
X. S.
Miao
, “
Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network
,”
npj 2D Mater. Appl.
3
(
1
),
31
(
2019
).
87.
G.
Wu
,
X.
Wang
,
Y.
Chen
,
S.
Wu
,
B.
Wu
,
Y.
Jiang
,
H.
Shen
,
T.
Lin
,
Q.
Liu
,
X.
Wang
,
P.
Zhou
,
S.
Zhang
,
W.
Hu
,
X.
Meng
,
J.
Chu
, and
J.
Wang
, “
MoTe2 p-n homojunctions defined by ferroelectric polarization
,”
Adv. Mater.
32
(
16
),
1907937
(
2020
).
88.
G.
Wu
,
X.
Wang
,
Y.
Chen
,
S.
Wu
,
H.
Shen
,
T.
Lin
,
J.
Ge
,
W.
Hu
,
S.-T.
Zhang
,
X. J.
Meng
,
J.
Chu
, and
J.
Wang
, “
Two-dimensional series connected photovoltaic cells defined by ferroelectric domains
,”
Appl. Phys. Lett.
116
(
7
),
073101
(
2020
).
89.
U.
Sassi
,
R.
Parret
,
S.
Nanot
,
M.
Bruna
,
S.
Borini
,
D.
De Fazio
,
Z.
Zhao
,
E.
Lidorikis
,
F. H. L.
Koppens
,
A. C.
Ferrari
, and
A.
Colli
, “
Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance
,”
Nat. Commun.
8
(
1
),
14311
(
2017
).