Metasurfaces have attracted significant attention owing to their broad capability to achieve exotic electromagnetic responses, and their potential as optical devices for wavefront control. Wide ranging materials may be used to form metasurfaces including noble and non-noble metals, oxides, ceramics, phase change materials, and semiconductors, permitting versatile and reconfigurable properties ideal for applications. In particular, applications that affect the science and technology of light—i.e., photonics—are of interest and will continue to grow in importance as our society becomes more digitally connected, but yet environmentally conscious.

The fields of metasurfaces1,2 and gradient index metasurfaces3 have been explored for nearly 20 years and 15 years, respectively. In 2003, the properties of single layer metamaterials—originally termed metafilms—were theoretically explored, and the discrete assembly of scatterers was treated as a continuous distribution of electric and magnetic polarization densities.1 Single layer metamaterials were also experimentally explored, and in 2004 it was shown that an effective magnetic response could be obtained from split-ring resonators in the terahertz4 and infrared5 regimes. The concept of gradient index single layer metamaterials was experimentally demonstrated in 2006 at microwave frequencies, where a negative index focusing lens was shown.3 The term “metasurface” came to the fore in 2009, where researchers showed that a single functional layer of metamaterial could be used for novel waveguide structures.2 Indeed, the use of few-layer metasurfaces has demonstrated novel functionality including perfect absorption6 and linear polarization conversion and anomalous refraction.7 

However, more recently there has been renewed interest in gradient index metasurface—particularly in the near infrared and optical wavelength regimes. Although structures, materials, and similar results were demonstrated in the late 1990s,8,9 there has none-the-less been some impressive results shown over the last decade.10–17 This special issue highlights the state-of-the-art in metasurface photonic devices including recent advances in theory, numerical simulation, fabrication methods, and spectroscopic characterization that are advancing the field. Original research articles are accompanied by invited tutorials and perspectives that offer deep physical insight and provide an exciting outlook on future research.

The “Metasurfaces for Photonic Devices” Special Topic in the Journal of Applied Physics offers an overview of the most active research areas currently under investigation in the broad field of metasurfaces while also highlighting their importance for photonic applications. In particular, featured topics show demonstration of photonic devices including absorbers, filters, holography, lenses, and achromatic lenses. These examples are carried out across a large portion of the electromagnetic spectrum ranging from microwave18,19 and terahertz20–24 frequencies to near infrared25,26 and optical27–30 wavelengths. Several works show a host of topics and exotic phenomena supported by metasurfaces including tailoring of dark modes through hybridization, generation of achromatic Airy beams, bound states in the continuum (BIC), tunable plasmonic response with liquid crystals, and parameter retrieval.

We are deeply indebted to the Journal of Applied Physics Lead Editors for the Special Topic, Professors Masayoshi Tonouchi and Jaime Gómez Rivas for their supportive and enthusiastic role. We also thank the wonderful staff of AIP Publishing for correspondence with invited authors, preparing the Call for Papers, and promoting the papers published in the collection.

1.
E.
Kuester
,
M.
Mohamed
,
M.
Piket-May
, and
C.
Holloway
, “
Averaged transition conditions for electromagnetic fields at a metafilm
,”
IEEE Trans. Antennas Propag.
51
,
2641
2651
(
2003
).
2.
C.
Holloway
,
E.
Kuester
, and
D.
Novotny
, “
Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials
,”
IEEE Antennas Wireless Propag. Lett.
8
,
525
529
(
2009
).
3.
T.
Driscoll
,
D. N.
Basov
,
A. F.
Starr
,
P. M.
Rye
,
S.
Nemat-Nasser
,
D.
Schurig
, and
D. R.
Smith
, “
Free-space microwave focusing by a negative-index gradient lens
,”
Appl. Phys. Lett.
88
,
081101
(
2006
).
4.
T. J.
Yen
,
W. J.
Padilla
,
N.
Fang
,
D. C.
Vier
,
D. R.
Smith
,
J. B.
Pendry
,
D. N.
Basov
, and
X.
Zhang
, “
Terahertz magnetic response from artificial materials
,”
Science
303
,
1494
1496
(
2004
).
5.
S.
Linden
,
C.
Enkrich
,
M.
Wegener
,
J.
Zhou
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Magnetic response of metamaterials at 100 terahertz
,”
Science
306
,
1351
1353
(
2004
).
6.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
,
207402
(
2008
).
7.
N. K.
Grady
,
J. E.
Heyes
,
D. R.
Chowdhury
,
Y.
Zeng
,
M. T.
Reiten
,
A. K.
Azad
,
A. J.
Taylor
,
D. A. R.
Dalvit
, and
H.-T.
Chen
, “
Terahertz metamaterials for linear polarization conversion and anomalous refraction
,”
Science
340
,
1304
1307
(
2013
).
8.
P.
Lalanne
,
S.
Astilean
,
P.
Chavel
,
E.
Cambril
, and
H.
Launois
, “
Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings
,”
Opt. Lett.
23
,
1081
(
1998
).
9.
P.
Lalanne
,
S.
Astilean
,
P.
Chavel
,
E.
Cambril
, and
H.
Launois
, “
Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff
,”
J. Opt. Soc. Am. A
16
,
1143
(
1999
).
10.
P.
Lalanne
and
P.
Chavel
, “
Metalenses at visible wavelengths: Past, present, perspectives
,”
Laser Photonics Rev.
11
,
1600295
(
2017
).
11.
S.-W.
Moon
,
Y.
Kim
,
G.
Yoon
, and
J.
Rho
, “
Recent progress on ultrathin metalenses for flat optics
,”
iScience
23
,
101877
(
2020
).
12.
H.-T.
Chen
,
A. J.
Taylor
, and
N.
Yu
, “
A review of metasurfaces: Physics and applications
,”
Rep. Prog. Phys.
79
,
076401
(
2016
).
13.
M.
Khorasaninejad
and
F.
Capasso
, “
Metalenses: Versatile multifunctional photonic components
,”
Science
358
,
eaam8100
(
2017
).
14.
W.
Liu
,
H.
Cheng
,
J.
Tian
, and
S.
Chen
, “
Diffractive metalens: From fundamentals, practical applications to current trends
,”
Adv. Phys.: X
5
,
1742584
(
2020
).
15.
X.
Zou
,
G.
Zheng
,
Q.
Yuan
,
W.
Zang
,
R.
Chen
,
T.
Li
,
L.
Li
,
S.
Wang
,
Z.
Wang
, and
S.
Zhu
, “
Imaging based on metalenses
,”
PhotoniX
1
,
2
(
2020
).
16.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J.-P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
,
333
337
(
2011
).
17.
C.
Pfeiffer
and
A.
Grbic
, “
Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets
,”
Phys. Rev. Lett.
110
,
197401
(
2013
).
18.
Q.
Xiao
,
Q.
Ma
,
L. W.
Wu
,
Y.
Gou
,
J. W.
Wang
,
W. H.
Li
,
R. Z.
Jiang
,
X.
Wan
, and
T. J.
Cui
, “
Broadband digital coding metasurface holography
,”
J. Appl. Phys.
130
,
235103
(
2021
).
19.
M.
Nitas
and
T. V.
Yioultsis
, “
Electromagnetic parameter retrieval technique utilizing eigenvalue analysis and field averaging
,”
J. Appl. Phys.
131
,
114902
(
2022
).
20.
W.
Jia
,
M.
Lou
,
P.
Gopalan
,
A.
Bhattacharyya
,
S.
Krishnamoorthy
, and
B.
Sensale-Rodriguez
, “
On the terahertz response of metal-gratings on anisotropic dielectric substrates and its prospective application for anisotropic refractive index characterization
,”
J. Appl. Phys.
131
,
193101
(
2022
).
21.
X.
You
,
C.
Fumeaux
, and
W.
Withayachumnankul
, “
Tutorial on broadband transmissive metasurfaces for wavefront and polarization control of terahertz waves
,”
J. Appl. Phys.
131
,
061101
(
2022
).
22.
S.
Kaur
,
S.
Karmakar
,
A.
Jana
,
R. K.
Varshney
, and
D.
Roy Chowdhury
, “
Hybridization of dark resonant states in terahertz metasurfaces
,”
J. Appl. Phys.
130
,
243101
(
2021
).
23.
L.
Wang
,
Z.
Zhao
,
M.
Du
,
H.
Qin
,
R. T.
Ako
, and
S.
Sriram
, “
Polarization insensitive symmetry protected quasi-bound states in the continuum at terahertz band
,”
J. Appl. Phys.
130
,
233102
(
2021
).
24.
S.
Li
,
L.
Zhang
, and
X.
Chen
, “
3D-printed terahertz metamaterial absorber based on vertical split-ring resonator
,”
J. Appl. Phys.
130
,
034504
(
2021
).
25.
X.
Shan
,
Z.
Li
,
J.
Li
,
R.
Fu
,
Z.
Zhou
,
Z.
He
, and
G.
Zheng
, “
Broadband continuous achromatic and super-dispersive metalens in near-infrared band
,”
J. Appl. Phys.
131
,
023103
(
2022
).
26.
Z.
Zheng
,
A.
Komar
,
K.
Zangeneh Kamali
,
J.
Noble
,
L.
Whichello
,
A. E.
Miroshnichenko
,
M.
Rahmani
,
D. N.
Neshev
, and
L.
Xu
, “
Planar narrow bandpass filter based on Si resonant metasurface
,”
J. Appl. Phys.
130
,
053105
(
2021
).
27.
E. A. P.
van Heijst
,
S. E. T.
ter Huurne
,
J. A. H. P.
Sol
,
G. W.
Castellanos
,
M.
Ramezani
,
S.
Murai
,
M. G.
Debije
, and
J.
Gómez Rivas
, “
Electric tuning and switching of the resonant response of nanoparticle arrays with liquid crystals
,”
J. Appl. Phys.
131
,
083101
(
2022
).
28.
S.-W.
Moon
,
C.
Lee
,
Y.
Yang
,
J.
Kim
,
T.
Badloe
,
C.
Jung
,
G.
Yoon
, and
J.
Rho
, “
Tutorial on metalenses for advanced flat optics: Design, fabrication, and critical considerations
,”
J. Appl. Phys.
131
,
091101
(
2022
).
29.
S.
Zhang
,
P.
Huo
,
Y.
Wang
,
M.
Li
,
C.
Zhang
, and
T.
Xu
, “
Generation of achromatic auto-focusing airy beam for visible light by an all-dielectric metasurface
,”
J. Appl. Phys.
131
,
043104
(
2022
).
30.
N.
Dice
,
A. J.
Austin
, and
D.
McIlroy
, “
Exploiting eutectic formation and phase separation to produce plasmonic metamaterials
,”
J. Appl. Phys.
130
,
125307
(
2021
).