All-inorganic perovskite CsPbX3 nanocrystals (NCs) have made remarkable achievements in optoelectronic applications due to their enhanced stability, low-cost, easy-to-perform synthetic routes, broad emission spectra tunability, and high photoluminescence quantum yields, especially for light emitting diodes (LEDs) and solar cells (SCs). In this perspective, the structure and optoelectronic properties of CsPbX3 NCs are reviewed, and the recent research progresses in LEDs and SCs are presented. Finally, a brief outlook of this field is proposed to point out some important challenges and possible solutions.

Lead halide perovskites have attracted great attention for optoelectronic applications in recent years,1–10 mainly due to their superior optoelectronic properties such as high absorption coefficients,11–13 relatively low carrier trap density,14–15 long carrier diffusion lengths,16–18 low exciton binding energies,19 and so on. Generally, lead halide perovskites possess a formula of ABX3, where A is a monovalent cation [methylammonium (MA+), formamidinium (FA+), or cesium (Cs+)], B is a divalent metal cation (Pb2+ or Sn2+), and the X is a halogen anion (Cl, Br, I, or mixed halides).20,21 During the past several years, lead halide perovskites have not only pushed forward the development of cost-effective and high-performance photovoltaic technologies but also demonstrated great advances in applications such as light emitting diode (LEDs),22–24 solar cells (SCs),25,26 photodetectors,27,28 and lasers.29 Despite the great success, several problems remain to be resolved, including, in particular their long-term stability under ambient conditions. It has been found that the low intrinsic stability of perovskites originated from the organic groups (MA+, FA+), which is extremely sensitive to moisture, oxygen, and heat.30,31 An effective way is to replace the organic group with inorganic cesium to produce all-inorganic perovskites. In 2015, Protesescu’s group pioneered the fabrication of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) by the hot-injection method, which exhibit high thermal stability and distinctive optical properties.32 Immediately after their report, many researchers became enthusiastic about the preparation, performance research, and application promotion of the all-inorganic perovskites.33–43 In this perspective, we first discuss the structure and optoelectronic properties of the all-inorganic perovskite CsPbX3 NCs [Fig. 1(a)]. Then, we mainly demonstrate recent advances in the fields of CsPbX3 NC-based LEDs and perovskite solar cells (PSCs). Figure 1(b) shows the external quantum efficiencies (EQEs) and power conversion efficiencies (PCEs) of CsPbX3 NC-based LEDs and SCs, respectively, which were demonstrated from 2015 to 2020 (the data were extracted from Tables I and II). Finally, we present a brief perspective including challenges and directions on all-inorganic perovskites.

FIG. 1.

(a) Schematic illustration of advantages and applications in CsPbX3 NCs. The photographs are CsPbX3 NC-based LED (left)44 and PSC (right).45 Reproduced with permission from Song et al., Adv. Mater. 27, 7162 (2015). Copyright 2015 Wiley-VCH; and Swarnkar et al., Science 354, 92 (2016). Copyright 2016 American Association for the Advancement of Science. (b) EQEs (left) and PCEs (right) of CsPbX3 NC-based LEDs and SCs, respectively, which were demonstrated from 2015 to 2020 (the data were extracted from Tables I and II).

FIG. 1.

(a) Schematic illustration of advantages and applications in CsPbX3 NCs. The photographs are CsPbX3 NC-based LED (left)44 and PSC (right).45 Reproduced with permission from Song et al., Adv. Mater. 27, 7162 (2015). Copyright 2015 Wiley-VCH; and Swarnkar et al., Science 354, 92 (2016). Copyright 2016 American Association for the Advancement of Science. (b) EQEs (left) and PCEs (right) of CsPbX3 NC-based LEDs and SCs, respectively, which were demonstrated from 2015 to 2020 (the data were extracted from Tables I and II).

Close modal
TABLE I.

Performance of some representative CsPbX3 NC-based LEDs.

Perovskite compositesEL peak (nm)Max. EQE (%)Max. L (cd m−2)Von (V)YearReference
CsPbBr3 NCs 516 0.12 946 4.2 2015 44  
CsPbBr3–CsPb2Br5 composite NCs 527 2.21 3853 4.6 2016 65  
CsPbBr3 NCs 515 3.0 330 4.5 2016 54  
CsPb(Br/I)3 NCs 648 6.30 2216 1.9 2016 66  
CsPbBr3 NCs 512 6.27 15185 3.4 2017 55  
CsPbBr3:Mn NCs 512 1.49 9971 4.2 2017 57  
CsPbBr3 NCs 512 8.73 1660 2.6 2017 56  
CsPbBr3 NCs 514 10.40 14000 2.8 2017 67  
CsPbI3:Ag NCs 690 11.20 1106  2018 58  
CsPbI3 NCs 691 13.5 1152 2.0 2018 59  
CsPbBr3 NCs 515 11.6 55800  2018 60  
CsPbI3 NCs 695 14.08 1444 3.45 2018 68  
CsPbBr3 NCs 518 16.48 76940  2018 69  
CsPbBr3 NCs 526 20.31 3400 2.7 2018 62  
CsPbBr0.6I2.4 NCs 649 21.30 500 2.8 2018 70  
CsPbBr3 NCs 520 8.2 557  2019 71  
CsPbBr3 NCs 514 28.20  2.74 2019 72  
CsPb0.64Zn0.36I3 NCs 682 15.1 2202 2.0 2019 73  
CsPbBr3 NCs 510 8.56 14021 2.85 2020 74  
CsPbI3 NCs 685 12.7 1360  2020 75  
FAPbBr3/CsPbBr3
core/shell NCs 
 8.10 1758 2.6 2020 76  
FA0.33Cs0.67Pb(I0.7Br0.3)3 NCs 694 20.9   2020 38  
CsPbBr3 NCs 479 12.3 90 2.8 2020 77  
CsPbBr3 NCs 510 22 1200  2020 77  
Perovskite compositesEL peak (nm)Max. EQE (%)Max. L (cd m−2)Von (V)YearReference
CsPbBr3 NCs 516 0.12 946 4.2 2015 44  
CsPbBr3–CsPb2Br5 composite NCs 527 2.21 3853 4.6 2016 65  
CsPbBr3 NCs 515 3.0 330 4.5 2016 54  
CsPb(Br/I)3 NCs 648 6.30 2216 1.9 2016 66  
CsPbBr3 NCs 512 6.27 15185 3.4 2017 55  
CsPbBr3:Mn NCs 512 1.49 9971 4.2 2017 57  
CsPbBr3 NCs 512 8.73 1660 2.6 2017 56  
CsPbBr3 NCs 514 10.40 14000 2.8 2017 67  
CsPbI3:Ag NCs 690 11.20 1106  2018 58  
CsPbI3 NCs 691 13.5 1152 2.0 2018 59  
CsPbBr3 NCs 515 11.6 55800  2018 60  
CsPbI3 NCs 695 14.08 1444 3.45 2018 68  
CsPbBr3 NCs 518 16.48 76940  2018 69  
CsPbBr3 NCs 526 20.31 3400 2.7 2018 62  
CsPbBr0.6I2.4 NCs 649 21.30 500 2.8 2018 70  
CsPbBr3 NCs 520 8.2 557  2019 71  
CsPbBr3 NCs 514 28.20  2.74 2019 72  
CsPb0.64Zn0.36I3 NCs 682 15.1 2202 2.0 2019 73  
CsPbBr3 NCs 510 8.56 14021 2.85 2020 74  
CsPbI3 NCs 685 12.7 1360  2020 75  
FAPbBr3/CsPbBr3
core/shell NCs 
 8.10 1758 2.6 2020 76  
FA0.33Cs0.67Pb(I0.7Br0.3)3 NCs 694 20.9   2020 38  
CsPbBr3 NCs 479 12.3 90 2.8 2020 77  
CsPbBr3 NCs 510 22 1200  2020 77  
TABLE II.

A summary of the performances CsPbX3 NC-based PSCs.

MaterialDevice structureJsc (mA cm−2)Voc (V)FF (%)PCE (%)YearReference
CsPbBr3 FTO/c-TiO2/CsPbBr3 NCs/Spiro-MeOTAD/Au 5.60 1.50 62.00 5.40 2016 97  
α-CsPbI3 FTO/TiO2/CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 13.47 1.23 65.00 10.77 2016 45  
CsPbI3 FTO/TiO2/AX-coated CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 15.24 1.16 76.63 13.43 2017 89  
CsPbI2Br ITO/TiO2/CsPbI2Br NCs/P3HT/Au 13.13 1.30 70.40 12.02 2018 94  
CsPbI3 FTO/TiO2/μGR/CsPbI3 NCs/PTAA/Au 13.59 1.18 72.60 11.40 2018 90  
CsPbI2Br/CsPbI3 FTO/TiO2/c-CsPbI2Br/CsPbI3 NCs/PTAA/Au 15.25 1.20 78.70 14.45 2018 98  
α-CsPbI3 FTO/TiO2/α-CsPbI3 NCs/PTB7/MoO3/Ag 12.39 1.27 80.00 12.55 2018 93  
CsPbI2Br FTO/TiO2/CsPbI2Br NCs/FA+ CsPbX3/FA+ NCs/PTAA/Au 14.51 1.22 79.60 14.12 2018 99  
CsPbI3 FTO/c-TiO2/m-TiO2/FAMAPbI3 film/CsPbI3 NCs/Spiro-OMeTAD/Au 24.42 1.09 … 18.56 2018 95  
CsPbBr3 ITO/SnO2/FA0.85MA0.15Pb(I0.85Br0.15)3 film/CsPbBr3 NCs/Spiro-OMeTAD/Au 23.51 1.12 77.96 20.56 2018 100  
CsPbI3 FTO/TiO2/CsPbI3 NCs/PTAA/MoO3/Ag 14.96 1.24 75.6 14.1 2019 101  
CsPbI3 FTO/TiO2/CsPbI3(Ge) NCs/Spiro-OMeTAD/Au 14.80 1.11 74.00 12.15 2019 91  
CsPbBr3 ITO/PTAA/FA0.7MA 0.26Cs0.04 PbI2.69Br0.31 film-CsPbBr3 NCs/PCBM/C60/BCP/Cu 22.95 1.19 77.00 21.03 2019 102  
CsPbI3 ITO/TiO2/Cs0.25FA0.75PbI3/CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 18.96 1.2 76 17.39 2019 103  
Cs0.5FA0.5PbI3 ITO/SnO2/Cs0.5FA0.5PbI3 NCs/Spiro-OMeTAD/Au 18.30 1.17 78.3 16.6 2020 96  
CsPbI3 FTO/TiO2/MAPbI3 film/CdSe+CsPbI3 NCs/Spiro-OMeTAD/Au 24.60 0.97 71 17.1 2020 104  
CsPbI3 FTO/c-TiO2/m-TiO2/CsPbI3 NCs/Cu12Sb4S13 NCs/Spiro-OMeTAD/Au 17.66 1.10 62.4 12.14 2020 105  
CsPbBrI2 ITO/TiO2/CsPbBrI2 NCs/P3HT/Au 14.22 1.20 71.30 12.20 2020 92  
CsPbI3 FTO/SnO2/CsPbI3 NCs/Spiro-OMeTAD/Ag 17.66 1.22 63.38 13.66 2020 106  
CsPbI3 FTO/c-TiO2/s-m-TiO2/CsPbI3 NCs/Spiro-OMeTAD/Au 17.77 1.06 75.8 14.32 2020 107  
MaterialDevice structureJsc (mA cm−2)Voc (V)FF (%)PCE (%)YearReference
CsPbBr3 FTO/c-TiO2/CsPbBr3 NCs/Spiro-MeOTAD/Au 5.60 1.50 62.00 5.40 2016 97  
α-CsPbI3 FTO/TiO2/CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 13.47 1.23 65.00 10.77 2016 45  
CsPbI3 FTO/TiO2/AX-coated CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 15.24 1.16 76.63 13.43 2017 89  
CsPbI2Br ITO/TiO2/CsPbI2Br NCs/P3HT/Au 13.13 1.30 70.40 12.02 2018 94  
CsPbI3 FTO/TiO2/μGR/CsPbI3 NCs/PTAA/Au 13.59 1.18 72.60 11.40 2018 90  
CsPbI2Br/CsPbI3 FTO/TiO2/c-CsPbI2Br/CsPbI3 NCs/PTAA/Au 15.25 1.20 78.70 14.45 2018 98  
α-CsPbI3 FTO/TiO2/α-CsPbI3 NCs/PTB7/MoO3/Ag 12.39 1.27 80.00 12.55 2018 93  
CsPbI2Br FTO/TiO2/CsPbI2Br NCs/FA+ CsPbX3/FA+ NCs/PTAA/Au 14.51 1.22 79.60 14.12 2018 99  
CsPbI3 FTO/c-TiO2/m-TiO2/FAMAPbI3 film/CsPbI3 NCs/Spiro-OMeTAD/Au 24.42 1.09 … 18.56 2018 95  
CsPbBr3 ITO/SnO2/FA0.85MA0.15Pb(I0.85Br0.15)3 film/CsPbBr3 NCs/Spiro-OMeTAD/Au 23.51 1.12 77.96 20.56 2018 100  
CsPbI3 FTO/TiO2/CsPbI3 NCs/PTAA/MoO3/Ag 14.96 1.24 75.6 14.1 2019 101  
CsPbI3 FTO/TiO2/CsPbI3(Ge) NCs/Spiro-OMeTAD/Au 14.80 1.11 74.00 12.15 2019 91  
CsPbBr3 ITO/PTAA/FA0.7MA 0.26Cs0.04 PbI2.69Br0.31 film-CsPbBr3 NCs/PCBM/C60/BCP/Cu 22.95 1.19 77.00 21.03 2019 102  
CsPbI3 ITO/TiO2/Cs0.25FA0.75PbI3/CsPbI3 NCs/Spiro-OMeTAD/MoOx/Al 18.96 1.2 76 17.39 2019 103  
Cs0.5FA0.5PbI3 ITO/SnO2/Cs0.5FA0.5PbI3 NCs/Spiro-OMeTAD/Au 18.30 1.17 78.3 16.6 2020 96  
CsPbI3 FTO/TiO2/MAPbI3 film/CdSe+CsPbI3 NCs/Spiro-OMeTAD/Au 24.60 0.97 71 17.1 2020 104  
CsPbI3 FTO/c-TiO2/m-TiO2/CsPbI3 NCs/Cu12Sb4S13 NCs/Spiro-OMeTAD/Au 17.66 1.10 62.4 12.14 2020 105  
CsPbBrI2 ITO/TiO2/CsPbBrI2 NCs/P3HT/Au 14.22 1.20 71.30 12.20 2020 92  
CsPbI3 FTO/SnO2/CsPbI3 NCs/Spiro-OMeTAD/Ag 17.66 1.22 63.38 13.66 2020 106  
CsPbI3 FTO/c-TiO2/s-m-TiO2/CsPbI3 NCs/Spiro-OMeTAD/Au 17.77 1.06 75.8 14.32 2020 107  

First, to deeply understand the optoelectronic properties of CsPbX3 NCs, it is necessary to be familiar with their crystal and electronic structures. CsPbX3 crystals mainly have orthorhombic, tetragonal, and cubic phases.20,32 The ideal phase structure of CsPbX3 with superior performance is cubic. As shown in Fig. 2, for the cubic structure of CsPbX3, Pb2+ coordinates with six X anions to form PbX64− octahedron, and Cs+ is located at the center of the framework surrounded by eight PbX64− octahedrons. Generally, the structural stability of ABX3 perovskite can be largely determined by the ionic radii of A-site, B-site, and X-site ions that correspond to the Goldschmidt's tolerance factor (t), which can be expressed as46 

t=RA+RX2(RB+RX),
(1)

where RA, RB, and RX are refer to ionic radii of A, B, and X ions, respectively. For stable ABX3 perovskite structure, t should be in the range of 0.813–1.107, whereas 0.9 < t < 1 is generally considered a good fit for an ideal cubic perovskite structure.47,48 Lowering or exceeding the upper limit of the t-factor may result in the non-perovskite phase of the perovskite. Additionally, all CsPbX3 perovskites show direct bandgaps, and the electronic structures of CsPbX3 perovskites with different halide compositions are found to show qualitatively common features, indicating their potential application in optoelectronics.34,49

FIG. 2.

Crystal structure of cubic CsPbX3.

FIG. 2.

Crystal structure of cubic CsPbX3.

Close modal

CsPbX3 NCs possess a series of unique optical properties such as the following (Fig. 3):32 emission spectra can be tuned over the entire visible spectral region by adjusting their composition luminescence spectrum (410–700 nm) [Fig. 3(a)]; narrow emission linewidths of 12–42 nm [Fig. 3(a)], which are much narrower than that of traditional quantum dots (such as CdS and CdSe); wide color gamut (≈140%) [Fig. 3(b)]; and ultrahigh photoluminescence quantum yield (PLQY) that nearly reaches 100% [Fig. 3(c)].50 Additionally, if the size of the CsPbX3 NCs is down to the quantum confinement regime, these NCs exhibit a distinctive quantum confinement effect, which is closely related to the particle size. For example, when the size of CsPbBr3 decreases from 11.8 to 3.8 nm, the emission wavelength changes from 520 to 460 nm due to the quantum confinement effect [Fig. 3(d)].32 Furthermore, the CsPbX3 NCs show two-photon or three-photon absorption properties, showing great potential for applications in nonlinear photonics and optical devices.51–52 Due to their ionic crystal characteristics and intrinsic vacancy defects, CsPbX3 NCs have good ionic conductivity and carrier transport properties. The carrier mobility in CsPbBr3 NCs exhibited one to three orders of magnitude higher than CdSe NCs, polycrystalline films, and single crystals of MAPbBr3. Yettapu et al. have found that the carrier mobility and diffusion length of the CsPbX3 NCs are up to 4500 cm2 V−1 s−1 and 9.2 μm, respectively.53 These amazing carrier transfer performances of CsPbX3 NCs would benefit their promising applications in optoelectronic and photovoltaic devices.

FIG. 3.

(a) CsPbX3 (X = Cl, Br, I) NCs exhibit composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission under UV lamp irradiation (λ = 365 nm), PL spectra of CsPbX3 (X = Cl, Br, I) NCs (λexc = 400 nm for all but 350 nm for CsPbCl3 samples). (b) Emission from CsPbX3 NCs (black data points) plotted on Coherent Infrared Energy (CIE) chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.Radiantzemax.com) was used to map the colors. Reproduced with permission from Protesescu et al., Nano Lett. 15, 3692 (2015). Copyright 2017 American Chemical Society. (c) Time-resolved PL decays for CsPbI3 NCs; insets are the photo of CsPbI3 NCs under irradiation with a UV lamp (λ = 365 nm) (left) and PLQY of CsPbI3 NCs (right). Reproduced with permission from Liu et al., ACS Nano 11, 10373 (2017). Copyright 2017 American Chemical Society. (d) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. Reproduced with permission from Protesescu et al., Nano Lett. 15, 3692 (2015). Copyright 2015 American Chemical Society.

FIG. 3.

(a) CsPbX3 (X = Cl, Br, I) NCs exhibit composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission under UV lamp irradiation (λ = 365 nm), PL spectra of CsPbX3 (X = Cl, Br, I) NCs (λexc = 400 nm for all but 350 nm for CsPbCl3 samples). (b) Emission from CsPbX3 NCs (black data points) plotted on Coherent Infrared Energy (CIE) chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.Radiantzemax.com) was used to map the colors. Reproduced with permission from Protesescu et al., Nano Lett. 15, 3692 (2015). Copyright 2017 American Chemical Society. (c) Time-resolved PL decays for CsPbI3 NCs; insets are the photo of CsPbI3 NCs under irradiation with a UV lamp (λ = 365 nm) (left) and PLQY of CsPbI3 NCs (right). Reproduced with permission from Liu et al., ACS Nano 11, 10373 (2017). Copyright 2017 American Chemical Society. (d) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. Reproduced with permission from Protesescu et al., Nano Lett. 15, 3692 (2015). Copyright 2015 American Chemical Society.

Close modal

CsPbX3 perovskite LEDs have been intensively investigated by virtue of superior optical and electrical properties of CsPbX3 NCs. Song et al. first reported CsPbX3 NC-based LEDs (ITO/PEDOT:PSS/PVK/QDs/TPBi/LiF/Al) [Fig. 4(a)], which exhibit blue, green, and yellow emission and showed a modest EQE of 0.12% [Fig. 4(b)].44 Taking advantage of the facile emission-color tunability, multicolored LEDs based on CsPbX3 NCs with varying halide composition were realized [Figs. 4(c)4(e)]. However, the non-optimized device exhibited poor efficiency and stability. Various factors must be taken into account when fabricating perovskite CsPbX3 LED devices, such as optical properties, stability, and carrier injection of the devices. Thus, inspired by the pioneering work, tremendous efforts have been devoted to improving the device performance and stability of the CsPbX3 NC-based LEDs, such as ligand modification, ion doping, and transport layer engineering.

FIG. 4.

(a) Schematic illustration of multilayer CsPbX3 NC-based LEDs. (b) Current density and EQE as a function of luminance for CsPbX3 NC-based LEDs. (c) Photographs of CsPbX3 NC-based LEDs with the Nanjing University of Science and Technology (NUST) logo. Reproduced with permission from Song et al., Adv. Mater. 27, 7162 (2015). Copyright 2015 Wiley-VCH.

FIG. 4.

(a) Schematic illustration of multilayer CsPbX3 NC-based LEDs. (b) Current density and EQE as a function of luminance for CsPbX3 NC-based LEDs. (c) Photographs of CsPbX3 NC-based LEDs with the Nanjing University of Science and Technology (NUST) logo. Reproduced with permission from Song et al., Adv. Mater. 27, 7162 (2015). Copyright 2015 Wiley-VCH.

Close modal

High-quality CsPbX3 NCs are crucial for fabricating high-performance LEDs. Surface passivation with long chain ligands is usually necessary to keep a high PLQY, which will hinder carrier injection of NC films. Therefore, replacing long ligands with relatively short ones is an effective way to improve charge carrier injection and maintain charge balance. Pan et al. exploited a relatively short ligand of di-dodecyl dimethyl ammonium bromide (DDAB) to passivate CsPbX3 NCs and improve charge carrier transport.54 CsPbX3 NC-based LEDs displayed a maximum luminance of 330 cd m−2 and a high EQE of 3.0%. Additionally, surface ligands of NCs have double-side effects on CsPbX3 NC-based LEDs. More ligands are needed to provide sufficient surface passivation, but excessive ligands will cause poor electric conductivity. The low EQE of CsPbX3 NC-based LEDs could be attributed to the excessive ligands that form an insulating layer. To solve this problem, Li et al. developed a new surface purification method to control the ligand density and balance the surface passivation and carrier injection, as shown in Fig. 5(a).55 Finally, the CsPbX3 LED device showed a maximum luminance of 15185 cd m−2 and an EQE of 6.27% [Figs. 5(b) and 5(c)], which was 50-fold higher than that of the CsPbX3 NC-based LEDs in their first report. Similarly, Chiba et al. reported a novel washing process using an ester solvent to remove excess ligands and achieved a highest EQE of 8.73% of CsPbBr3 NC-based LEDs.56 

FIG. 5.

(a) Schematic illustration of the controlling the surfaces of ligand density on CsPbBr3 NC and the corresponding changes of ink stability, PLQY, and carrier injection. (b) Schematic illustration and a cross-sectional TEM image (scale bar: 50 nm) showing the device architecture: ITO/PEDOT:PSS (40 nm)/poly-TPD (30 nm)/CsPbBr3 NCs (20 nm)/TPBi (40 nm)/LiF/Al. (c) EQE of CsPbBr3 NC-based LEDs under a number of ligand purification cycles (I)–(II) with respect to luminance. Reproduced with permission from Li et al., Adv. Mater. 29, 1603885 (2017). Copyright 2017 Wiley-VCH.

FIG. 5.

(a) Schematic illustration of the controlling the surfaces of ligand density on CsPbBr3 NC and the corresponding changes of ink stability, PLQY, and carrier injection. (b) Schematic illustration and a cross-sectional TEM image (scale bar: 50 nm) showing the device architecture: ITO/PEDOT:PSS (40 nm)/poly-TPD (30 nm)/CsPbBr3 NCs (20 nm)/TPBi (40 nm)/LiF/Al. (c) EQE of CsPbBr3 NC-based LEDs under a number of ligand purification cycles (I)–(II) with respect to luminance. Reproduced with permission from Li et al., Adv. Mater. 29, 1603885 (2017). Copyright 2017 Wiley-VCH.

Close modal

Doping CsPbX3 with targeted ions could tune luminescence properties and electrical features, which would improve the efficiency and stability of CsPbX3 NC-based LEDs. Transition metal element Mn is one of the most commonly used dopants for CsPbX3 NCs. Zou’s group demonstrated an effective strategy through Mn2+-substitution to fundamentally stabilize lattices of CsPbX3 NCs due to the enhancement of formation energy.57 Benefiting from the Mn2+ doping, the EQE of CsPbBr3 NC-based LEDs were promoted from 0.81% to 1.49% [Figs. 6(a) and 6(b)]. Lu’s group reported that Ag cathode was utilized to passivate surface defect states of CsPbI3 NCs and simultaneously acted as dopant to reduce the electron injection barrier in CsPbI3 LEDs.58 The peak brightness of a CsPbI3 NC LED device with an Ag cathode (1106 cd m−2) was more than double that of the ITO-based LED (455 cd m−2), and the current density of the Ag-based device was lower than that of the ITO-based device under the same voltage, as shown in Fig. 6(c), which demonstrated that higher charge injection efficiency was achieved benefiting from the reduction of the electron injection barrier. The average peak EQE of the LEDs increased from 7.3% to 11.2% upon replacing the ITO cathode with Ag [Fig. 6(d)]. Further on, they developed a method to improve the photo/electroluminescence (EL) efficiency and stability of CsPbI3 NCs by using SrCl2 as a co-precursor.59 Sr2+ cations incorporate into the perovskite lattice to partially replace Pb2+ cations, resulting in slight lattice contraction and enhanced formation energy of perovskite NCs, which improves their stability. At the same time, Cl anions from SrCl2 are able to efficiently passivate surface defect states of CsPbI3 NCs, thus converting nonradiative trap states to radiative states, leading to the enhanced PLQY and prolonged PL lifetime. As shown in Fig. 6(e), the maximum values of luminance are 510 cd m−2 and 1152 cd m−2 for the CsPbI3 and CsPbI3-0.1 (the synthetic ratio of SrCl2:PbI2 equal to 0.1) based LEDs, respectively. LEDs using CsPbI3-0.1 NCs as the emitting layer show a significantly enhanced device performance with a high EQE of 13.5% [Fig. 6(f)]. Furthermore, organic groups (FA+, MA+) were used to reduce the trapping of excitons and enhance the recombination efficiency of electrons and holes in CsPbX3 NC films. Song et al. demonstrated that the LEDs based on CsPbBr3 NCs exhibit a peak EQE of 11.6% and a current efficiency of 45.4 cd A−1 after introducing a small amount of FA+ dopant.60 

FIG. 6.

(a) Schematic illustration of typical multilayer-structured LED device by using pure CsPbBr3, CsPbBr3:Mn (2.6 mol. %) and CsPbBr3:Mn (3.8 mol. %) NCs as green LEDs. (b) EQE of CsPbBr3 LED devices as a function of luminance. Reproduced with permission from Zou et al., J. Am. Chem. Soc. 139, 11443 (2017). Copyright 2017, American Chemical Society. (c) Current density and luminance vs driving voltage for LEDs with Ag and ITO cathodes. (d) EQE vs current density for LEDs with Ag and ITO cathodes; insets show photographs of the respective working devices. Reproduced with permission from Lu et al., ACS Energy Lett. 3, 1571 (2018). Copyright 2018, American Chemical Society. (e) Current density and luminance vs driving voltage of the CsPbI3 and CsPbI3-0.1 NC-based LEDs. (f) EQE vs luminance of the CsPbI3 and CsPbI3-0.1 NC-based LED; inset shows photographs of the two devices. Reproduced with permission from Lu et al., Adv. Mater. 30, 1804691 (2018). Copyright 2018 Wiley-VCH.

FIG. 6.

(a) Schematic illustration of typical multilayer-structured LED device by using pure CsPbBr3, CsPbBr3:Mn (2.6 mol. %) and CsPbBr3:Mn (3.8 mol. %) NCs as green LEDs. (b) EQE of CsPbBr3 LED devices as a function of luminance. Reproduced with permission from Zou et al., J. Am. Chem. Soc. 139, 11443 (2017). Copyright 2017, American Chemical Society. (c) Current density and luminance vs driving voltage for LEDs with Ag and ITO cathodes. (d) EQE vs current density for LEDs with Ag and ITO cathodes; insets show photographs of the respective working devices. Reproduced with permission from Lu et al., ACS Energy Lett. 3, 1571 (2018). Copyright 2018, American Chemical Society. (e) Current density and luminance vs driving voltage of the CsPbI3 and CsPbI3-0.1 NC-based LEDs. (f) EQE vs luminance of the CsPbI3 and CsPbI3-0.1 NC-based LED; inset shows photographs of the two devices. Reproduced with permission from Lu et al., Adv. Mater. 30, 1804691 (2018). Copyright 2018 Wiley-VCH.

Close modal

To make highly efficient and stable perovskite-based LEDs, appropriate carrier transport layers are important. Imbalanced charge carrier injection would cause electrons’ or holes’ accumulation, which consequently results in non-radiative recombination. The effective way to solve this problem is carefully selecting and modifying the electron-transporting layer (ETL) and hole-transporting layer (HTL). Choosing suitable materials with energy level matching is necessary for selecting and modifying the ETL and HTL to obtain high efficiency of the device. Good electron transport capability and energy level match for electron injection are important to ETL, while good hole transport capability and energy level match for hole injection are important to HTL. Considering the inherent chemical instability of polymers in the transporting layer, selecting stable inorganic semiconductors for ETL and HTL is effective for improving the stability of CsPbX3 devices. Chemical doping in the ETL or HTL is an effective technique to tune the energy levels and to balance the electrons and holes in the CsPbX3 perovskite emissive layer. Besides, it is a feasible approach to introduce a charge transport interfacial layer between the transport and emitting layers. Zhang et al. introduced a perfluorinated ionomer (PFI) thin film sandwiched between the HTL and the CsPbBr3 NCs layer, which facilitated the hole injection and prevented the NC emitters from charging.61 Wei et al. have presented an approach to control the perovskite compositional distribution and for efficient green-emitting CsPbBr3 NC-based LEDs.62 They also demonstrated that the incorporation of an insulating layer of poly(methylmethacrylate) (PMMA) is critical to overcome the imbalanced charge carrier injection, which further increases the EQE from 17% to 20.3%. Additionally, inorganic charge transport layers possessed high resistance against moisture and oxygen and show better environmental stability and higher charge mobility compared with the traditional organic materials. In this regard, Shi et al. fabricated a stacking all-inorganic multilayer structure by using perovskite CsPbBr3 NCs as the emissive layer and inorganic n-type MgZnO and p-type MgNiO as the carrier injectors to replace the organic carrier-transporting layers, as shown in Fig. 7(a).63 Through energy band engineering of carrier injectors by Mg incorporation and their thickness optimization, CsPbBr3 NC-based LEDs produced a maximum luminance of 3809 cd/m2, luminous efficiency of 2.25 cd/A, and EQE of 2.39% [Fig. 7(b)]. Continuation of the above work, they demonstrated a strategy of solution-processed all-inorganic heterostructure that was proposed to overcome the emission efficiency and operation stability issues facing the challenges of perovskite LEDs.64 Solution-processed n-ZnO nanoparticles and p-NiO are used as the carrier injectors to fabricate all-inorganic heterostructured CsPbBr3 NC-based LEDs [Fig. 7(c)]. The device with bright green emission [Fig. 7(d)] produced a maximum luminance of 6093.2 cd/m2, an EQE of 3.79%, and a current efficiency of 7.96 cd/A [Fig. 6(e)]. More importantly, the studied CsPbBr3 LEDs possess good operation stability after a long test time in air ambient and can endure a high humidity (75%, 12 h) even without encapsulation [Fig. 7(f)]. Thus, this work points out the direction for high stability inorganic perovskite LEDs approaching the standards for practical use.

FIG. 7.

(a) Schematic diagram and cross-sectional SEM image of the p-MgNiO/ CsPbBr3/nMgZnO/n+-GaN heterostructured diode. (b) Luminous efficiency and EQE vs voltage of the LED. Reproduced with permission from Shi et al., Nano Lett. 17, 313 (2017). Copyright 2017 American Chemical Society. (c) Schematic illustration of solution-processed perovskite LEDs with a multilayered structure of Al/nZnO NPs/CsPbBr3 NCs/p-NiO/ITO. (d) EL spectra measured at different voltages, together with a typical emission photograph of the LED with an active area of 2 × 2 mm2 (at 5.0 V). (e) EQE, current efficiency, and power efficiency vs voltage of the LED. (f) Normalized emission intensity of the perovskite LED after different running periods under different humidity conditions. Reproduced with permission from Shi et al., ACS Nano 12, 1462 (2018). Copyright 2018 American Chemical Society.

FIG. 7.

(a) Schematic diagram and cross-sectional SEM image of the p-MgNiO/ CsPbBr3/nMgZnO/n+-GaN heterostructured diode. (b) Luminous efficiency and EQE vs voltage of the LED. Reproduced with permission from Shi et al., Nano Lett. 17, 313 (2017). Copyright 2017 American Chemical Society. (c) Schematic illustration of solution-processed perovskite LEDs with a multilayered structure of Al/nZnO NPs/CsPbBr3 NCs/p-NiO/ITO. (d) EL spectra measured at different voltages, together with a typical emission photograph of the LED with an active area of 2 × 2 mm2 (at 5.0 V). (e) EQE, current efficiency, and power efficiency vs voltage of the LED. (f) Normalized emission intensity of the perovskite LED after different running periods under different humidity conditions. Reproduced with permission from Shi et al., ACS Nano 12, 1462 (2018). Copyright 2018 American Chemical Society.

Close modal

Table I shows a summary of the performances for CsPbX3 NC-based LEDs. From the above discussion, we can conclude that although great progress has been made in the study of CsPbX3 NC-based LEDs during the past five years, there are still many problems for practical applications. Their efficiency, cost, and stability need further improvement before practical applications.

In the last few years, organic–inorganic hybrid PSCs have had unprecedentedly progress from an unstable 3.8% PCE to over 25%.78 Despite their high performance, these PSCs are thermally unstable and moist owing to the volatility of their organic components, which greatly hinder their further commercial applications.79 Replacing the organic cation with inorganic Cs+ has been found to be effective and improved the stability. In 2015, Kulbak et al. first fabricated CsPbBr3 PSCs with a PCE of 5.95% and an open-circuit voltage (VOC) of 1.28 V, which showed excellent performance equally well with the MAPbBr3 PSCs.80 The CsPbBr3 layers were annealed at 250 °C and the cells were fabricated in an ambient atmosphere, implied a fairly good stability. Though the PCE in this work is not high, this pioneering research showed that an all-inorganic version of the perovskite material works equally well as the organic one, in particular, generating the high open-circuit voltages that are an important feature of these cells. Since then, many researches have focused on inorganic CsPbX3 PSCs.81–85 Achieving high PCE, the optical bandgap of the absorption layer is of vital importance. The bandgap of CsPbX3 is decreased from 3.0 to 1.73 eV with the halide ions from Cl, Br, to I. For CsPbCl3, the optical bandgap is above 3.0 eV, which makes it unsuitable for solar cell applications. CsPbI3 NCs are often better characterized as the gamma (γ) perovskite phase.86 However, black cubic (α) CsPbI3 with a suitable bandgap of 1.73 eV may be the best candidate for CsPbX3 PSCs. Despite the fact that CsPbI3 PSCs can already achieve PCE as high as 19%,87 CsPbI3 will immediately transform into the yellow orthorhombic (δ) phase with a wide bandgap of 2.82 eV at a temperature below 315 °C, which basically does not absorb much sunlight and impedes their applications. Additionally, many physical properties differ between nanometer-sized and bulk crystalline materials of the same chemical compound. CsPbX3 NCs exhibit improved room temperature cubic-phase stability and attractive optical properties.45 Interestingly, CsPbX3 NCs provide a reduced crystallite grain size, which stabilizes the desired cubic phase without suffering from a bandgap increase upon anion mixing.88 Thus, an effective way to stabilize PSCs is to form CsPbX3 NC-based PSCs. In this prospect, we mainly introduce the research progress of CsPbX3 NC-based PSCs.

The modification of CsPbX3 NCs is essential for high-quality CsPbX3 NC-based films’ formation that results in more efficient charge transport. Many research studies have been devoted for NC modification, such as FAI (formamidinium iodide) coating, micrometer-sized graphene (μ-graphene, μGR) cross-linking, and GeI2 additives. In 2016, Swarnkar and co-workers developed an approach to purify CsPbI3 NCs using methyl acetate (MeOAc) as an antisolvent, and these CsPbI3 NCs remained stable in the desired cubic phase (Eg = 1.73 eV) for months of storage in an ambient.45 The champion solar cell employing 9 nm α-CsPbI3 NCs as a light absorber showed a respectable PCE of 10.77% and an open-circuit voltage (VOC) of 1.23 V for a 0.10 cm2 cell made and tested completely in ambient conditions (relative humidity ∼15% to 25%), as shown in Figs. 8(a) and 8(b). The low charge carrier transport efficiency of NC-based films hindered the efficiencies of the PSCs. Later on, the same group explored an A-site cation halide salt (AX) treatment (where A refers to either Cs, MA, or FA cations) for CsPbI3 NCs.89 The AX treatment was presented to double the film mobility, enabling increased photocurrent, and lead to a record certified PCE of 13.43%. In addition, phase change induced by agglomeration of NCs will result in low carrier transport efficiency. To address this problem, Wang et al. used high mobility (800 cm2 V−1 s−1) micrometer-sized μ-graphene (μGR) sheets to cross-link the CsPbI3 NCs for optimal electronic conductivity and at the meantime to keep NCs from agglomeration to achieve long-term stability.90 The μGR provides effective carrier transport channel resulting in increased PCE to as high as 11.40%, nearly 12% improvement compared to the 10.17% efficiency achieved by the control device. In 2019, Liu and co-workers have showed that CsPbI3 NCs with near-unity PLQY and long chemical stability can be obtained by using PbI2/GeI2 in combination with trioctylphosphine (TOP) ligands.91 CsPbI3 NC-based PSCs (Au/Spiro-OMeTAD/CsPbI3 NCs/TiO2/FTO) [Fig. 8(c)] delivered a PCE of 12.15% [Fig. 8(d)] and retained 85% of their peak performance after storage over 90 days [Fig. 8(e)]. Also, proper ligand amount is necessary for the excellent device performance. Low ligand amount will induce serious trouble in film formation, and high ligand amount will lead to poor electric transport ability. More recently, Liu et al. have showed an effective MeOAc solvent treatment method to obtain a high-quality film with good charge transportation by controlling the amount of the ligands around the initial CsPbBrI2 NCs in the film.92 Through this method, the trap state density decreased about four folds and the carrier mobility increased nearly 15 folds. They demonstrated that controlling the ligand amount around the NCs at 1.01 wt. %, the PSC exhibits a PCE as high as 12.2%.

FIG. 8.

(a) Schematic (with TEM image of NCs) and SEM cross section of the CsPbI3 SC. (b) Current density–voltage (J–V) curves of a device measured in air over the course of 15 days. The black diamond represents the stabilized power output of the device at 0.92 V. Reproduced with permission from Swarnkar et al., Science 354, 92 (2016). Copyright 2016 American Association for the Advancement of Science. (c) Cross-sectional SEM image of the fabricated CsPbI3 NC-based SCs. (d) J–V curves of the champion CsPbI3 NC-based SCs measured under simulated solar illumination of 100 mW/cm2. (e) Long-term device stability measurement of the solar cells. The unsealed solar cells were kept in a dry cabinet (<20% relative humidity) in the dark under room temperature and tested regularly in open air with the relative humidity of 30%–40%. PCE values were obtained from the reverse scans. Reproduced with permission from Liu et al., Chem. Mater. 31, 798 (2019). Copyright 2019 American Chemical Society.

FIG. 8.

(a) Schematic (with TEM image of NCs) and SEM cross section of the CsPbI3 SC. (b) Current density–voltage (J–V) curves of a device measured in air over the course of 15 days. The black diamond represents the stabilized power output of the device at 0.92 V. Reproduced with permission from Swarnkar et al., Science 354, 92 (2016). Copyright 2016 American Association for the Advancement of Science. (c) Cross-sectional SEM image of the fabricated CsPbI3 NC-based SCs. (d) J–V curves of the champion CsPbI3 NC-based SCs measured under simulated solar illumination of 100 mW/cm2. (e) Long-term device stability measurement of the solar cells. The unsealed solar cells were kept in a dry cabinet (<20% relative humidity) in the dark under room temperature and tested regularly in open air with the relative humidity of 30%–40%. PCE values were obtained from the reverse scans. Reproduced with permission from Liu et al., Chem. Mater. 31, 798 (2019). Copyright 2019 American Chemical Society.

Close modal

Improving charge transport within the NCs and carrier extraction at the interfaces with the charge transport layers are crucial for the performance of PSCs. Yuan et al. have fabricated solution-processed FTO/TiO2/CsPbI3 NCs/hole-transporting material (HTM)/MoO3/Ag PSCs at room temperature under ambient conditions, employing a series of dopant-free polymeric hole-transporting materials (HTMs).93 CsPbI3 NC-based PSCs showed efficient charge extraction at NC/polymer interfaces and avoid device instability by using the polymeric hole conductor PTB7, achieving a remarkable PCE up to 12.55% and an extremely low energy loss of 0.45 eV, as shown in Fig. 9(a). The large energy losses (Eloss) have become a major hindrance for the ultimate efficiency of CsPbX3 PSCs. Zeng et al. have reported an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and poly(3-hexylthiophene) (P3HT) hole-acceptor to minimize the Eloss.94 They demonstrated that electron–hole recombination could be reduced by depositing a thin P3HT layer on the top of CsPbI2Br NC films [Fig. 9(b)], due to the electronic passivation of surface defect states. The CsPbI2Br NC-based PSCs with annealing P3HT showed a VOC of up to 1.32 V and Eloss of down to 0.5 eV, with a highest PCE of 12.02% [Fig. 9(c)]. In addition, the optimal devices show excellent stability retaining around 90% of their initial PCE after aging for near 1000 h [Fig. 9(d)].

FIG. 9.

(a) J–V curves of optimized CsPbI3 NC-based SCs adopting PTB7 measured under AM1.5G solar illumination; insets are the device structure and TEM image of CsPbI3 NCs. Reproduced with permission from Yuan et al., Joule 2, 2450 (2018). Copyright 2018, Elsevier. (b) The steady-state PL spectra for CsPbI2Br films with a P3HT layer using a 405 nm laser as the excitation source from the perovskite film side (blue curve), from the glass side (blue shadow), and CsPbI2Br films without P3HT from the perovskite film side (red curve). Inset shows the schematic of PL experiment setup. Note that a 405 nm laser as excitation source and a thin P3HT layer were used for this experiment in order to avoid the influence from PL of P3HT. (c) The J–V curves of the champion CsPbI2Br SC. The insets present the histogram of J–V scan efficiencies for 30 SCs. The PCE was measured under 100 mW cm−2 AM 1.5G illumination, which has been corrected by a calibrated Si solar cell. (d) Long-term PCE stability of a CsPbI2Br SC without encapsulations stored in a dried glovebox and tested once a week in open air with the relative humidity of ≈15%–40%. Reproduced with permission from Zeng et al., Adv. Mater. 30, 1705393 (2018). Copyright 2018 Wiley-VCH.

FIG. 9.

(a) J–V curves of optimized CsPbI3 NC-based SCs adopting PTB7 measured under AM1.5G solar illumination; insets are the device structure and TEM image of CsPbI3 NCs. Reproduced with permission from Yuan et al., Joule 2, 2450 (2018). Copyright 2018, Elsevier. (b) The steady-state PL spectra for CsPbI2Br films with a P3HT layer using a 405 nm laser as the excitation source from the perovskite film side (blue curve), from the glass side (blue shadow), and CsPbI2Br films without P3HT from the perovskite film side (red curve). Inset shows the schematic of PL experiment setup. Note that a 405 nm laser as excitation source and a thin P3HT layer were used for this experiment in order to avoid the influence from PL of P3HT. (c) The J–V curves of the champion CsPbI2Br SC. The insets present the histogram of J–V scan efficiencies for 30 SCs. The PCE was measured under 100 mW cm−2 AM 1.5G illumination, which has been corrected by a calibrated Si solar cell. (d) Long-term PCE stability of a CsPbI2Br SC without encapsulations stored in a dried glovebox and tested once a week in open air with the relative humidity of ≈15%–40%. Reproduced with permission from Zeng et al., Adv. Mater. 30, 1705393 (2018). Copyright 2018 Wiley-VCH.

Close modal

Notably, CsPbX3 NCs are appropriate for use as an interface engineering layer in PSCs due to their superior stability and tunable bandgap position. Liu et al. demonstrated that the efficiency and stability of PSCs can be enhanced by introducing stable α-CsPbI3 NCs as an interface layer between the MA0.17FA0.83Pb(I0.83Br0.17)3 (marked as FAMAPbI3) film and the HTM layer.95 By using a mixed-type perovskite FAMAPbI3 as the light-absorption layer to further fulfill the valence band position (VBP) matching requirement between FAMAPbI3 and CsPbI3 NCs layers, the PCE of SC (FTO/c-TiO2/m-TiO2/FAMAPbI3 film/CsPbI3 NCs/Spiro-OMeTAD/Au) was increased from 15.17% to 18.56% due to the improvement of hole transmission efficiency from perovskite to HTM layer. Moreover, PSCs with CsPbI3 NCs maintained 82% of their initial performance for 30 days at over 30% RH without any encapsulation, suggesting that the stability of the PSCs was also markedly improved due to the high stability of the CsPbI3 NCs.

Up to now, the certified record PCE of CsPbX3 NC-based PSCs (ITO/SnO2/Cs1−xFAxPbI3 NCs/Spiro-OMeTAD/Au) is 16.6% with negligible hysteresis, which reported by Hao et al., as shown in Figs. 10(a) and 10(b).96 They developed an effective oleic acid (OA) ligand-assisted cation-exchange strategy to facilitate Cs1−xFAxPbI3 NC-based PSCs with remarkable ambient stability. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling the rapid formation of Cs1−xFAxPbI3 NCs with reduced defect density. They further demonstrate that NC-based devices exhibit substantially enhanced photostability compared with thin film-based devices [Fig. 10(c)], due to the suppressed phase segregation. The mixed Cs1−xFAxPbI3 NC system offers a pathway toward next-generation photovoltaics and optoelectronics with improved stability and flexibility. Finally, the advancement in the progress of CsPbX3 NC-based PSCs in the past few years is shown in Table II. We believe that CsPbX3 NC-based SCs may quickly emerge as strong contenders in the photovoltaic area.

FIG. 10.

(a) Cross-sectional TEM image of the Cs1−xFAxPbI3 NC-based SCs. (b) Certificated J–V curve of Cs0.5FA0.5PbI3 NC-based SC. (c) Long-term stability of unencapsulated SCs fabricated with Cs0.25FA0.75PbI3-bulk film, Cs0.25FA0.75PbI3-NC film, and Cs0.5FA0.5PbI3-NC film monitored at open circuit under 1-sun illumination in an N2 atmosphere (the device temperature was measured to be ∼50 to 65 °C). Mixed-cation NCs were derived from an OA-rich environment. Each average (symbol) and standard deviation (error bar) was calculated on the basis of three device-testing results. Reproduced with permission from Hao et al., Nat. Energy 5, 1 (2020). Copyright 2020 Nature Publishing Group.

FIG. 10.

(a) Cross-sectional TEM image of the Cs1−xFAxPbI3 NC-based SCs. (b) Certificated J–V curve of Cs0.5FA0.5PbI3 NC-based SC. (c) Long-term stability of unencapsulated SCs fabricated with Cs0.25FA0.75PbI3-bulk film, Cs0.25FA0.75PbI3-NC film, and Cs0.5FA0.5PbI3-NC film monitored at open circuit under 1-sun illumination in an N2 atmosphere (the device temperature was measured to be ∼50 to 65 °C). Mixed-cation NCs were derived from an OA-rich environment. Each average (symbol) and standard deviation (error bar) was calculated on the basis of three device-testing results. Reproduced with permission from Hao et al., Nat. Energy 5, 1 (2020). Copyright 2020 Nature Publishing Group.

Close modal

In this perspective, we summarize the recent advances in CsPbX3 NC-based LEDs and SCs. CsPbX3 NCs not only have excellent optoelectronic properties but also have better stability, which makes a tremendous improvement in the performance of CsPbX3 NC-based devices within the past few years. Despite great progress, there is still plenty of room for further improvement of CsPbX3 NCs.

First, the prominent issue of CsPbX3 NCs is their structural instability against moisture, oxygen, thermal, and photo-disturbances. Therefore, ligands, surface modification, or inert shells of CsPbX3 NCs are still needed to further improve their stability. The main obstacle to the widespread applications of CsPbX3 NCs is their inherent instability caused by ionic characteristics. Grain boundaries are abundant in NCs, thus providing ample pathways for ionic migration. Considering the success in quantum dot light emitting diodes (QLEDs), we think that it would be a good idea to coat CsPbX3 NCs with well-designed semiconductor shells to overcome the low stability. The semiconductor shell can not only confine the excited carriers but also prevent the degradation during the operation process. Owing to the ionic nature of CsPbX3 NCs, a CsPbX3/semiconductor core/shell structure is challenging. A new preparation strategy for this core/shell structure is still anticipated.

Second, the EQEs of perovskite LEDs are over 20% for green, red, and near-infrared (NIR) regions with different device optimization strategies. Despite the great success of green or NIR perovskite LEDs, blue emitting devices have become the key shortcoming for wide-color-gamut display fields. The blue wavelength emission needs the most work. Using mixed chloride and bromide is an effective way to realize blue emission. Blue emissive from sky-blue (490 nm) to deep blue or even ultraviolet (410 nm) can be achieved by increasing the chloride content. However, the spectrum is unstable in the mixed halide LED system, which attributes to phase separation induced by the halide migration under an electric field. Thus, the color stability has been hit. Additionally, a larger charge injection barrier for blue perovskite LEDs than visible perovskite LEDs due to the deep valence band leads to poor charge injection efficiency and degradation of the overall device performance. Color instability and poor charge injection restrain the development of high-efficiency blue perovskite LEDs, which are the obstacles to the commercial applications. Particularly for CsPbX3 NC-based blue LEDs, the highest EQE is 12.3% as reported by Dong et al.,77 which is still far behind that of commercial organic LEDs and QLEDs. Hence, the development of blue LEDs is still in its infancy, and efforts should be made for CsPbX3 NC-based blue LEDs. Although it is still some distance away, we believe that blue perovskite LEDs will be in commercial applications in the future.

Third, the necessary toxic lead element raises a critical concern for future commercial development. To address the toxicity issue, recent research effort has been devoted to develop lead-free halide perovskite (LFHP) NCs, such as Sn, Sb, and Bi based LFHP NCs. Up to now, for LFHP solar cells, the highest PCE is 13.24% reported by Nishimura et al., which is still a certain distance with lead-based perovskite.108 Additionally, it remains challenging for LFHP NCs due to poor stability when dealing with heat, light, oxygen, and humidity. Looking into the future, many strategies may be pursued for improving the stability of LFHPs NCs, such as core/shell structure, ligand modification, air-stable metal dopant, and so on. Although the properties of LFHP NCs may be inferior to CsPbX3 NCs, optical and device performance improvement of LFHP NCs is an important research direction in the future.

Although challenges remain, we believe that new and interesting physical and chemical properties will be found for all-inorganic perovskite NCs, and new devices will be developed for real life applications in the near future.

This research was funded by the National Natural Science Foundation of China (NNSFC) (Nos. 51872161, 51902179, and 11904198) and the Natural Science Foundation of Shandong Province (Nos. ZR2017ZB0316 and ZR2019BF019).

There are no conflicts to declare.

The data that support the findings of this study are available within the article.

1.
J.
Burschka
,
N.
Pellet
,
S.-J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
Nature
499
,
316
(
2013
).
2.
N. J.
Jeon
,
J. H.
Noh
,
W. S.
Yang
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
,
Nature
517
,
476
(
2015
).
3.
W.
Nie
,
H.
Tsai
,
R.
Asadpour
,
J.-C.
Blancon
,
A. J.
Neukirch
,
G.
Gupta
,
J. J.
Crochet
,
M.
Chhowalla
,
S.
Tretiak
,
M. A.
Alam
,
H.-L.
Wang
, and
A. D.
Mohite
,
Science
347
,
522
(
2015
).
4.
G. E.
Eperon
,
T.
Leijtens
,
K. A.
Bush
,
R.
Prasanna
,
T.
Green
,
J. T.-W.
Wang
,
D. P.
Mcmeekin
,
G.
Volonakis
,
R. L.
Milot
,
R.
May
,
A.
Palmstrom
,
D. J.
Slotcavage
,
R. A.
Belisle
,
J. B.
Patel
,
E. S.
Parrott
,
R. J.
Sutton
,
W.
Ma
,
F.
Moghadam
,
B.
Conings
,
A.
Babayigit
,
H.-G.
Boyen
,
S.
Bent
,
F.
Giustino
,
L. M.
Herz
,
M. B.
Johnston
,
M. D.
Mcgehee
, and
H. J.
Snaith
,
Science
354
,
861
(
2016
).
5.
N. X.
Li
,
S. X.
Tao
,
Y. H.
Chen
,
X. X.
Niu
,
C. K.
Onwudinanti
,
C.
Hu
,
Z. W.
Qiu
,
Z. Q.
Xu
,
G. H. J.
Zheng
,
L. G.
Wang
,
Y.
Zhang
,
L.
Li
,
H. F.
Liu
,
Y. Z.
Lun
,
J. W.
Hong
,
X. Y.
Wang
,
Y. Q.
Liu
,
H. P.
Xie
,
Y. L.
Gao
,
Y.
Bai
,
S. H.
Yang
,
G.
Brocks
,
Q.
Chen
, and
H. P.
Zhou
,
Nat. Energy
4
,
408
(
2019
).
6.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
,
Chem. Rev.
119
,
3036
(
2019
).
7.
K.
Wang
,
D.
Yang
,
C. C.
Wu
,
M.
Sanghadasa
, and
S.
Priya
,
Prog. Mater. Sci.
106
,
100580
(
2019
).
8.
X.
Cheng
,
S.
Yang
,
B. Q.
Cao
,
X. T.
Tao
, and
Z. L.
Chen
,
Adv. Funct. Mater.
30
,
1905021
(
2019
).
9.
Y. C.
Yu
,
J. H.
Hou
,
L. H.
Zhang
,
Q. S.
Sun
,
S.
Attique
,
W. J.
Wang
,
X. X.
Xu
,
F.
Xu
,
Z. P.
Ci
,
B. Q.
Cao
,
X. S.
Qiao
,
X. H.
Xiao
, and
S. K.
Yang
,
Nano Lett.
20
,
2316
(
2020
).
10.
N.
Li
,
J. L.
Liu
,
C.
Li
,
Y. J.
Li
,
J. B.
Jia
,
Y. Q.
Wu
,
H. Q.
Yu
,
B. L.
Yuan
, and
B. Q.
Cao
,
ACS Sustainable Chem. Eng.
8
,
7020
(
2020
).
11.
H. J.
Snaith
,
J. Phys. Chem. Lett.
4
,
3623
(
2013
).
12.
Q. S.
Zeng
,
X. Y.
Zhang
,
C. M.
Liu
,
T. L.
Feng
,
Z.
Chen
,
W.
Zhang
,
W. T.
Zheng
,
H.
Zhang
, and
B.
Yang
,
Sol. RRL
3
,
1800239
(
2019
).
13.
N.
Li
,
F.
Xu
,
Z. W.
Qiu
,
J. L.
Liu
,
X. X.
Wan
,
X. M.
Zhu
,
H. Q.
Yu
,
C.
Li
,
Y. N.
Liu
, and
B. Q.
Cao
,
J. Power Sources
426
,
188
(
2019
).
14.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
15.
M. I.
Saidaminov
,
A. L.
Abdelhady
,
B.
Murali
,
E.
Alarousu
,
V. M.
Burlakov
,
W.
Peng
,
I.
Dursun
,
L.
Wang
,
Y.
He
,
G.
Maculan
,
A.
Goriely
,
T.
Wu
,
O. F.
Mohammed
, and
O. M.
Bakr
,
Nat. Commun.
6
,
7586
(
2015
).
16.
G.
Xing
,
N.
Mathews
,
S.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Graetzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Science
342
,
344
(
2013
).
17.
D. W. D.
Quilettes
,
S. M.
Vorpahl
,
S. D.
Stranks
,
H.
Nagaoka
,
G. E.
Eperon
,
M. E.
Ziffer
,
H. J.
Snaith
, and
D. S.
Ginger
,
Science
348
,
683
(
2015
).
18.
X. X.
Wan
,
Y. N.
Jiang
,
Z. W.
Qiu
,
H. L.
Zhang
,
X. M.
Zhu
,
I.
Sikandar
,
X. B.
Liu
,
X.
Chen
, and
B. Q.
Cao
,
ACS Appl. Energy Mater.
1
,
3947
(
2018
).
19.
V.
D’Innocenzo
,
G.
Grancini
,
M. J. P.
Alcocer
,
A. R. S.
Kandada
,
S. D.
Stranks
,
M. M.
Lee
,
G.
Lanzani
,
H. J.
Snaith
, and
A.
Petrozza
,
Nat. Commun.
5
,
3586
(
2014
).
20.
X. M.
Li
,
F.
Cao
,
D. J.
Yu
,
J.
Chen
,
Z. G.
Sun
,
Y. L.
Shen
,
Y.
Zhu
,
L.
Wang
,
Y.
Wei
,
Y.
Wu
, and
H. B.
Zeng
,
Small
13
,
1603996
(
2017
).
21.
Y.
Wang
,
L.
Song
,
Y.
Chen
, and
W.
Huang
,
ACS Photonics
7
,
10
(
2020
).
22.
Z.
Wei
and
J.
Xing
,
J. Phys. Chem. Lett.
10
,
3035
(
2019
).
23.
K.
Sim
,
T.
Jun
,
J.
Bang
,
H.
Kamioka
,
J.
Kim
,
H.
Hiramatsu
, and
H.
Hosono
,
Appl. Phys. Rev.
6
,
031402
(
2019
).
24.
Y. T.
Zou
,
Z. C.
Yuan
,
S.
Bai
,
F.
Gao
, and
B. Q.
Sun
,
Mater. Today Nano
5
,
100028
(
2019
).
25.
J. L.
Liu
,
N.
Li
,
J. B.
Jia
,
J.
Dong
,
Z. W.
Qiu
,
S.
Iqbal
, and
B. Q.
Cao
,
Sol. Energy
181
,
285
(
2019
).
26.
Q.
Wali
,
F. J.
Iftikhar
,
M. E.
Khan
,
A.
Ullah
,
Y.
Iqbal
, and
R.
Jose
,
Org. Electron.
78
,
105590
(
2020
).
27.
K. M.
Sim
,
A.
Swarnkar
,
A.
Nag
, and
D. S.
Chung
,
Laser Photonics Rev.
12
,
1700209
(
2018
).
28.
D. D.
Hao
,
J.
Zou
, and
J.
Huang
,
InfoMat.
2
,
139
(
2020
).
29.
H. M.
Zhu
,
Y. P.
Fu
,
F.
Meng
,
X. X.
Wu
,
Z. Z.
Gong
,
Q.
Ding
,
M. V.
Gustafsson
,
M. T.
Trinh
,
S.
Jin
, and
X. Y.
Zhu
,
Nat. Mater.
14
,
636
(
2015
).
30.
K.
Qin
,
B. H.
Dong
, and
S. M.
Wang
,
J. Energy Chem.
33
,
90
(
2019
).
31.
Z.
Wang
,
Z. J.
Shi
,
T. T.
Li
,
Y. H.
Chen
, and
W.
Huang
,
Angew. Chem. Int. Ed.
56
,
1190
(
2017
).
32.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
,
Nano Lett.
15
,
3692
(
2015
).
33.
A.
Swarnkar
,
R.
Chulliyil
,
V. K.
Ravi
,
M.
Irfanullah
,
A.
Chowdhury
, and
A.
Nag
,
Angew. Chem. Int. Ed.
54
,
15424
(
2015
).
34.
X.
Li
,
Y.
Wu
,
S. L.
Zhang
,
B.
Cai
,
Y.
Gu
,
J. Z.
Song
, and
H. B.
Zeng
,
Adv. Funct. Mater.
26
,
2435
(
2016
).
35.
Q. S.
Shan
,
J. Z.
Song
,
Y. S.
Zou
,
J. H.
Li
,
L. M.
Xu
,
J.
Xue
,
Y. H.
Dong
,
B. N.
Han
,
J. W.
Chen
, and
H. B.
Zeng
,
Small
13
,
1701770
(
2017
).
36.
J. S.
Yao
,
J.
Ge
,
B. N.
Han
,
K. H.
Wang
,
H. B.
Yao
,
H. L.
Yu
,
J. H.
Li
,
B. S.
Zhu
,
J. Z.
Song
,
C.
Chen
,
Q.
Zhang
,
H. B.
Zeng
,
Y.
Luo
, and
S. H.
Yu
,
J. Am. Chem. Soc.
140
,
3626
(
2018
).
37.
X. B.
Kong
,
F.
Xu
,
W. Z.
Wang
,
F. Y.
Juan
,
Y. Q.
Wu
,
X. M.
Li
,
J. K.
Li
,
X.
Chen
, and
B. Q.
Cao
,
Appl. Phys. Lett.
115
,
153104
(
2019
).
38.
Z. B.
Fang
,
W. J.
Chen
,
Y. L.
Shi
,
J.
Zhao
,
S. L.
Chu
,
J.
Zhang
, and
Z. G.
Xiao
,
Adv. Funct. Mater.
30
,
1909754
(
2020
).
39.
F. Y.
Juan
,
F.
Xu
,
M.
Wang
,
M. X.
Wang
,
G. Z.
Hou
,
J.
Xu
,
H. M.
Wei
,
Y. H.
Wang
,
Y. Q.
Wu
, and
B. Q.
Cao
,
Chem. Phys.
530
,
110627
(
2020
).
40.
D.
Qi
,
L.
Lei
,
M.
Juliana
, and
S.
Franky
,
J. Phys. Mater.
3
,
012002
(
2020
).
41.
N. K.
Kumawat
,
X. K.
Liu
,
D.
Kabra
, and
F.
Gao
,
Nanoscale
11
,
2109
(
2019
).
42.
Q. V.
Le
,
H. W.
Jang
, and
S. Y.
Kim
,
Small Methods
2
,
1700419
(
2018
).
43.
J. Y.
Yuan
,
A.
Hazarika
,
Q.
Zhao
,
X. F.
Ling
,
T.
Moot
,
W. L.
Ma
, and
J. M.
Luther
,
Joule
4
,
1
(
2020
).
44.
J.
Song
,
J.
Li
,
X.
Li
,
L.
Xu
,
Y.
Dong
, and
H. B.
Zeng
,
Adv. Mater.
27
,
7162
(
2015
).
45.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
,
Science
354
,
92
(
2016
).
46.
W.
Travis
,
E. N. K.
Glover
,
H.
Bronstein
,
D. O.
Scanlon
, and
R. G.
Palgrave
,
Chem. Sci.
7
,
4548
(
2016
).
47.
Y.
Wei
,
Z.
Cheng
, and
J.
Lin
,
Chem. Soc. Rev.
48
,
310
(
2019
).
48.
L. M.
Xu
,
S. C.
Yuan
,
H. B.
Zeng
, and
J. Z.
Song
,
Mater. Today Nano
6
,
100036
(
2019
).
49.
Y.
Wang
and
H. D.
Sun
,
Small Methods
2
,
1700252
(
2018
).
50.
F.
Liu
,
Y. H.
Zhang
,
C.
Ding
,
S.
Kobayashi
,
T.
Izuishi
,
N.
Nakazawa
,
T.
Toyoda
,
T.
Ohta
,
S.
Hayase
,
T.
Minemoto
,
K.
Yoshino
,
S. Y.
Dai
, and
Q.
Shen
,
ACS Nano
11
,
10373
(
2017
).
51.
T.
He
,
J. Z.
Li
,
C.
Ren
,
S. Y.
Xiao
,
Y. W.
Li
,
R.
Chen
, and
X. D.
Lin
,
Appl. Phys. Lett.
111
,
211105
(
2017
).
52.
C.
Becker
,
S.
Burger
,
C.
Barth
,
P.
Manley
,
K.
Jäger
,
D.
Eisenhauer
,
G.
Köppel
,
P.
Chabera
,
J. S.
Chen
,
K. B.
Zheng
, and
T.
Pullerits
,
ACS Photonics
5
,
4668
(
2018
).
53.
G. R.
Yettapu
,
D.
Talukdar
,
S.
Sarkar
,
A.
Swarnkar
,
A.
Nag
,
P.
Ghosh
, and
P.
Mandal
,
Nano Lett.
16
,
4838
(
2016
).
54.
J.
Pan
,
L. N.
Quan
,
Y. B.
Zhao
,
W.
Peng
,
B.
Murali
,
S. P.
Sarmah
,
M. J.
Yuan
,
L.
Sinatra
,
N. M.
Alyami
,
J. K.
Liu
,
E.
Yassitepe
,
Z. Y.
Yang
,
O.
Voznyy
,
R.
Comin
,
M. N.
Hedhili
, and
O. F.
Mohammed
,
Adv. Mater.
28
,
8718
(
2016
).
55.
J. H.
Li
,
L. M.
Xu
,
T.
Wang
,
J. Z.
Song
,
J. W.
Chen
,
J.
Xue
,
Y. H.
Dong
,
B.
Cai
, and
Q. S.
Shan
,
Adv. Mater.
29
,
1603885
(
2017
).
56.
T.
Chiba
,
K.
Hoshi
,
Y. J.
Pu
,
Y.
Takeda
,
Y.
Hayashi
,
S.
Ohisa
,
S.
Kawata
, and
J.
Kido
,
ACS Appl. Mater. Int.
9
,
18054
(
2017
).
57.
S. H.
Zou
,
Y. S.
Liu
,
J. H.
Li
,
C. P.
Liu
,
R.
Feng
,
F. L.
Jiang
,
Y. X.
Li
,
J. Z.
Song
,
H. B.
Zeng
,
M. C.
Hong
, and
X. Y.
Chen
,
J. Am. Chem. Soc.
139
,
11443
(
2017
).
58.
M.
Lu
,
X. Y.
Zhang
,
X.
Bai
,
H.
Wu
,
X. Y.
Shen
,
Y.
Zhang
,
W.
Zhang
,
W. T.
Zheng
,
H. W.
Song
,
W. W.
Yu
, and
A. L.
Rogach
,
ACS Energy Lett.
3
,
1571
(
2018
).
59.
M.
Lu
,
X. Y.
Zhang
,
Y.
Zhang
,
J.
Guo
,
X. Y.
Shen
,
W. W.
Yu
, and
A. L.
Rogach
,
Adv. Mater.
30
,
1804691
(
2018
).
60.
J. Z.
Song
,
J. H.
Li
,
L. M.
Xu
,
J. H.
Li
,
F. J.
Zhang
,
B. N.
Han
,
Q. S.
Shan
, and
H. B.
Zeng
,
Adv. Mater.
30
,
1800764
(
2018
).
61.
X.
Zhang
,
H.
Lin
,
H.
Huang
,
C.
Reckmeier
,
Y.
Zhang
,
W. C. H.
Choy
, and
A. L.
Rogach
,
Nano Lett.
17
,
598
(
2017
).
62.
K. B.
Lin
,
J.
Xing
,
L. N.
Quan
,
F. P. G.
de Arquer
,
X. W.
Gong
,
J. X.
Lu
,
L. Q.
Xie
,
W. J.
Zhao
,
D.
Zhang
,
C. Z.
Yan
,
W. Q.
Li
,
X. Y.
Liu
,
Y.
Lu
,
J.
Kirman
,
E. H.
Sargent
,
Q. H.
Xiong
, and
Z. H.
Wei
,
Nature
562
,
245
(
2018
).
63.
Z. F.
Shi
,
Y.
Li
,
Y. T.
Zhang
,
Y. S.
Chen
,
X. J.
Li
,
D.
Wu
,
T. T.
Xu
,
C. X.
Shan
, and
G. T.
Du
,
Nano Lett.
17
,
313
(
2017
).
64.
Z. F.
Shi
,
S.
Li
,
Y.
Li
,
H.
Ji
,
X.
Li
,
D.
Wu
,
T.
Xu
,
Y.
Chen
,
Y.
Tian
,
Y.
Zhang
,
C.
Shan
, and
G.
Du
,
ACS Nano
12
,
1462
(
2018
).
65.
X. L.
Zhang
,
B.
Xu
,
J. B.
Zhang
,
Y.
Gao
,
Y. J.
Zheng
,
K.
Wang
, and
X. W.
Sun
,
Adv. Funct. Mater.
26
,
4595
(
2016
).
66.
X. Y.
Zhang
,
C.
Sun
,
Y.
Zhang
,
H.
Wu
,
C. Y.
Ji
,
Y. H.
Chuai
,
P.
Wang
,
S. P.
Wen
,
C. F.
Zhang
, and
W. W.
Yu
,
J. Phys. Chem. Lett.
7
,
4602
(
2016
).
67.
J. J.
Si
,
Y.
Liu
,
Z. F.
He
,
H.
Du
,
K.
Du
,
D.
Chen
,
J.
Li
,
M. M.
Xu
,
H.
Tian
,
H. P.
He
,
D. W.
Di
,
C. Q.
Lin
,
Y. C.
Cheng
,
J. P.
Wang
, and
Y. Z.
Jin
,
ACS Nano.
11
,
11100
(
2017
).
68.
G. P.
Li
,
J. S.
Huang
,
H. W.
Zhu
,
Y. Q.
Li
,
J. X.
Tang
, and
Y.
Jiang
,
Chem. Mater.
30
,
6099
(
2018
).
69.
H. Z.
Song
,
T.
Fang
,
J. H.
Li
,
L. M.
Xu
,
F. J.
Zhang
,
B. N.
Han
,
Q. S.
Shan
, and
H. B.
Zeng
,
Adv. Mater.
30
,
1805409
(
2018
).
70.
T.
Chiba
,
Y.
Hayashi
,
H.
Ebe
,
K.
Hoshi
,
J.
Sato
,
S.
Sato
,
Y. J.
Pu
,
S.
Ohisa
, and
J.
Kido
,
Nat. Photonics
12
,
681
(
2018
).
71.
D.
Yang
,
P. L.
Li
,
Y. T.
Zou
,
M. H.
Cao
,
H. C.
Hu
,
Q. X.
Zhong
,
J. X.
Hu
,
B. Q.
Sun
,
S.
Duhm
,
Y.
Xu
, and
Q.
Zhang
,
Chem. Mater.
31
,
1575
(
2019
).
72.
Y.
Shen
,
L. P.
Cheng
,
Y. Q.
Li
,
W.
Li
,
J. D.
Chen
,
S. T.
Lee
, and
J. X.
Tang
,
Adv. Mater.
31
,
1901517
(
2019
).
73.
X. Y.
Shen
,
Y.
Zhang
,
S. V.
Kershaw
,
T. S.
Li
,
C. C.
Wang
,
X. Y.
Zhang
,
W. Y.
Wang
,
D. G.
Li
,
Y. H.
Wang
,
M.
Lu
,
L. J.
Zhang
,
C.
Sun
,
D.
Zhao
,
G. S.
Qin
,
X.
Bai
,
W. W.
Yu
, and
A. L.
Rogach
,
Nano Lett.
19
,
1552
(
2019
).
74.
J. F.
Dai
,
J.
Xi
,
Y. Q.
Zu
,
L.
Li
,
J.
Xu
,
Y. F.
Shi
,
X. Y.
Liu
,
Q. H.
Fan
,
J. J.
Zhang
,
S. P.
Wang
,
F.
Yuan
,
H.
Dong
,
B.
Jiao
,
X.
Hou
, and
Z. X.
Wu
,
Nano Energy
70
,
104467
(
2020
).
75.
Y.
Wang
,
Y.
Teng
,
P.
Lu
,
X. Y.
Shen
,
P.
Jia
,
M.
Lu
,
Z. F.
Shi
,
B.
Dong
,
W. W.
Yu
, and
Y.
Zhang
,
Adv. Funct. Mater.
30
,
1910140
(
2020
).
76.
C. X.
Zhang
,
S.
Wang
,
X. M.
Li
,
M. J.
Yuan
,
L.
Turyanska
, and
X. Y.
Yang
,
Adv. Funct. Mater.
30
,
1910582
(
2020
).
77.
Y. T.
Dong
,
Y. K.
Wang
,
F. L.
Yuan
,
A.
Johnston
,
Y.
Liu
,
D. X.
Ma
,
M. J.
Choi
,
B.
Chen
,
M.
Chekini
,
S. W.
Baek
,
L. K.
Sagar
,
J.
Fan
,
Y.
Hou
,
M. J.
Wu
,
S. J.
Lee
,
B.
Sun
,
S.
Hoogland
,
R. Q.
Bermudez
,
H.
Ebe
,
P.
Todorovic
,
F.
Dinic
,
P. C.
Li
,
H. T.
Kung
,
M. I.
Saidaminov
,
E.
Kumacheva
,
E.
Spiecker
,
L. S.
Liao
,
O.
Voznyy
,
Z. H.
Lu
, and
E. H.
Sargent
,
Nat. Nanotechnol.
15
,
1
(
2020
).
78.
NREL
, See https://www.nrel.gov/pv/module-efficiency.html for “Best research-cell efficiencies.”
79.
M. B.
Faheem
,
B.
Khan
,
C.
Feng
,
M. U.
Farooq
,
F.
Raziq
,
Y. Q.
Xiao
, and
Y. B.
Li
,
ACS Energy Lett.
5
,
290
(
2020
).
80.
M.
Kulbak
,
D.
Cahen
, and
G.
Hodes
,
J. Phys. Chem. Lett.
6
,
2452
(
2015
).
81.
P.
Roy
,
N.
Kumar Sinha
,
S.
Tiwari
, and
A.
Khare
,
Solar Energy
198
,
665
(
2020
).
82.
B.
Parida
,
S.
Yoon
,
S. M.
Jeong
,
J. S.
Cho
,
J.-K.
Kim
, and
D.-W.
Kang
,
Sol. Energy Mater. Sol. C
204
,
110212
(
2020
).
83.
H. D.
Pham
,
T. C.-J.
Yang
,
S. M.
Jain
,
G. J.
Wilson
, and
P.
Sonar
,
Adv. Energy Mater.
10
,
1903326
(
2020
).
84.
M. K.
Assadi
,
S.
Bakhoda
,
R.
Saidur
, and
H.
Hanaei
,
Renewable Sustainable Energy Rev.
81
,
2812
(
2018
).
85.
J. R.
Zhang
,
G.
Hodes
,
Z. W.
Jin
, and
S. Z.
Liu
,
Angew. Chem. Int. Ed.
58
,
15596
(
2019
).
86.
Q.
Zhao
,
A.
Hazarika
,
L. T.
Schelhas
,
J.
Liu
,
E. A.
Gaulding
,
G. R.
Li
,
M. H.
Zhang
,
M. F.
Toney
,
P. C.
Sercel
, and
J. M.
Luther
,
ACS Energy Lett.
5
,
238
(
2020
).
87.
Y.
Wang
,
X. M.
Liu
,
T. Y.
Zhang
,
X. T.
Wang
,
M.
Kan
,
J. L.
Shi
, and
Y. X.
Zhao
,
Angew. Chem. Int. Ed.
58
,
2
(
2019
).
88.
J. T.
Gan
,
J. X.
He
,
R. L. Z.
Hoye
,
A.
Mavlonov
,
F.
Raziq
,
J. L.
MacManus-Driscoll
,
X. Q.
Wu
,
S.
Li
,
X. T.
Zu
,
Y. Q.
Zhan
,
X. Y.
Zhang
, and
L.
Qiao
,
ACS Energy Lett.
4
,
1308
(
2019
).
89.
E. M.
Sanehira
,
A. R.
Marshall
,
J. A.
Christians
,
S. P.
Harvey
,
P. N.
Ciesielski
,
L. M.
Wheeler
,
P.
Schulz
,
L. Y.
Lin
,
M. C.
Beard
, and
J. M.
Luther
,
Sci. Adv.
3
,
eaao4204
(
2017
).
90.
Q.
Wang
,
Z. W.
Jin
,
D.
Chen
,
D. L.
Bai
,
H.
Bian
,
J.
Sun
,
G.
Zhu
,
G.
Wang
, and
S. Z.
Liu
,
Adv. Energy Mater.
8
,
1800007
(
2018
).
91.
F.
Liu
,
C.
Ding
,
Y. H.
Zhang
,
T.
Kamisaka
,
Q.
Zhao
,
J. M.
Luther
,
T.
Toyoda
,
S.
Hayase
,
T.
Minemoto
,
K.
Yoshino
,
B.
Zhang
,
S. Y.
Dai
,
J.
Jiang
,
S. X.
Tao
, and
Q.
Shen
,
Chem. Mater.
31
,
798
(
2019
).
92.
C. M.
Liu
,
Q. S.
Zeng
,
Y.
Zhao
,
Y.
Yu
,
M. X.
Yang
,
H.
Gao
,
H. T.
Wei
, and
B.
Yang
,
Sol. RRL
4
,
2000102
(
2020
).
93.
J. Y.
Yuan
,
X. F.
Ling
,
D.
Yang
,
F. C.
Li
,
S. J.
Zhou
,
J. W.
Shi
,
Y. L.
Qian
,
J. X.
Hu
,
Y. S.
Sun
,
Y. G.
Yang
,
X. Y.
Gao
,
S.
Duhm
,
Q.
Zhang
, and
W. L.
Ma
,
Joule
2
,
2450
(
2018
).
94.
Q. S.
Zeng
,
X. Y.
Zhang
,
X. L.
Feng
,
S. Y.
Lu
,
Z. L.
Chen
,
X.
Yong
,
S. A. T.
Redfern
,
H. T.
Wei
,
H. Y.
Wang
,
H. Z.
Shen
,
W.
Zhang
,
W. T.
Zheng
,
H.
Zhang
,
J. S.
Tse
, and
B.
Yang
,
Adv. Mater.
30
,
1705393
(
2018
).
95.
C.
Liu
,
M.
Hu
,
X. Y.
Zhou
,
J. C.
Wu
,
L. Z.
Zhang
,
W. G.
Kong
,
X. N.
Li
,
X. Z.
Zhao
,
S. Y.
Dai
,
B. M.
Xu
, and
C.
Cheng
,
NPG Asia Mater.
10
,
552
(
2018
).
96.
M. M.
Hao
,
Y.
Bai
,
S.
Zeiske
,
L.
Ren
,
J. X.
Liu
,
Y. B.
Yuan
,
N.
Zarrabi
,
N. Y.
Cheng
,
M.
Ghasemi
,
P.
Chen
,
M. Q.
Lyu
,
D. X.
He
,
J. H.
Yun
,
Y.
Du
,
Y.
Wang
,
S. S.
Ding
,
A.
Armin
,
P.
Meredith
,
G.
Liu
,
H. M.
Cheng
, and
L. Z.
Wang
,
Nat. Energy
5
,
1
(
2020
).
97.
Q. A.
Akkerman
,
M.
Gandini
,
F. D.
Stasio
,
P.
Rastogi
,
F.
Palazon
,
G.
Bertoni
,
J. M.
Ball
,
M.
Prato
,
A.
Petrozza
, and
L.
Manna
,
Nat. Energy
2
,
16194
(
2016
).
98.
H.
Bian
,
D. L.
Bai
,
Z. W.
Jin
,
K.
Wang
,
L.
Liang
,
H. R.
Wang
,
J. R.
Zhang
,
Q.
Wang
, and
S. Z.
Liu
,
Joule
2
,
1500
(
2018
).
99.
J. R.
Zhang
,
Z. W.
Jin
,
L.
Liang
,
H. R.
Wang
,
D. L.
Bai
,
H.
Bian
,
K.
Wang
,
Q.
Wang
,
N. Y.
Yuan
,
J. N.
Ding
, and
S. Z.
Liu
,
Adv. Sci.
5
,
1801123
(
2018
).
100.
H. C.
Zai
,
C.
Zhu
,
H. P.
Xie
,
Y. Z.
Zhao
,
C. B.
Shi
,
Z. X.
Chen
,
X. X.
Ke
,
M. L.
Sui
,
C. F.
Chen
,
J. S.
Hu
,
Q. S.
Zhang
,
Y. L.
Gao
,
H. P.
Zhou
,
Y. J.
Li
, and
Q.
Chen
,
ACS Energy Lett.
3
,
30
(
2018
).
101.
X. F.
Ling
,
S. J.
Zhou
,
J. Y.
Yuan
,
J. W.
Shi
,
Y. L.
Qian
,
B. W.
Larson
,
Q.
Zhao
,
C. C.
Qin
,
F. C.
Li
,
G. Z.
Shi
,
C.
Stewart
,
J. X.
Hu
,
X. L.
Zhang
,
J. M.
Luther
,
S.
Duhm
, and
W. L.
Ma
,
Adv. Energy Mater.
9
,
1900721
(
2019
).
102.
W. Q.
Yang
,
R.
Su
,
D. Y.
Luo
,
Q.
Hu
,
F.
Zhang
,
Z. J.
Xu
,
Z. P.
Wang
,
J. L.
Tang
,
Z.
Lv
,
X. Y.
Yang
,
Y. G.
Tu
,
W.
Zhang
,
H. Z.
Zhong
,
Q. H.
Gong
,
T. P.
Russell
, and
R.
Zhu
,
Nano Energy
67
,
104189
(
2019
).
103.
Q.
Zhao
,
A.
Hazarika
,
X. H.
Chen
,
S. P.
Harvey
,
B. W.
Larson
,
G. R.
Teeter
,
J.
Liu
,
T.
Song
,
C. X.
Xiao
,
L.
Shaw
,
M. H.
Zhang
,
G. R.
Li
,
M. C.
Beard
, and
J. M.
Luther
,
Nat. Commun.
10
,
2842
(
2019
).
104.
J.
Ge
,
W. X.
Li
,
X.
He
,
H.
Chen
,
W.
Fang
,
X.
Du
,
Y. X.
Li
, and
L.
Zhao
,
Sustainable Energy Fuels
4
,
1837
(
2020
).
105.
Y. L.
Liu
,
X. Z.
Zhao
,
Z. F.
Yang
,
Q. T.
Li
,
W.
Wei
,
B.
Hu
, and
W.
Chen
,
ACS Appl. Energy Mater.
3
,
3521
(
2020
).
106.
D. L.
Jia
,
J. X.
Chen
,
M.
Yu
,
J. H.
Liu
,
E. M. J.
Johansson
,
A.
Hagfeldt
, and
X. L.
Zhang
,
Small
16
,
2001772
(
2020
).
107.
K. Q.
Chen
,
W.
Jin
,
Y. P.
Zhang
,
T. Q.
Yang
,
P.
Reiss
,
Q. H.
Zhong
,
U.
Bach
,
Q. T.
Li
,
Y. W.
Wang
,
H.
Zhang
,
Q. L.
Bao
, and
Y. L.
Liu
,
J. Am. Chem. Soc.
142
,
3775
(
2020
).
108.
K.
Nishimura
,
M. A.
Kamarudin
,
D.
Hirotani
,
K.
Hamada
,
Q.
Shen
,
S.
Iikubo
,
T.
Minemoto
,
K.
Yoshino
, and
S.
Hayase
,
Nano Energy
74
,
104858
(
2020
).