Here, we show that during their half-century history, helicopters have been evolving into geometrically similar architectures with surprisingly sharp correlations between dimensions, performance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the constructal law, which accounts for the engine efficiency trend and the proportionality between “motor” size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoretical body of research the evolutionary design of all technologies [A. Bejan, The Physics of Life: The Evolution of Everything (St. Martin's Press, New York, 2016)].

Earlier work with the constructal law has shown that it is possible to predict and correlate the speed-mass data of all animals (insects, birds, mammals, fish, and crustaceans), including airplanes, athletics, and inanimate flow systems.1–5 All these designs of movement on the globe evolve. Airplanes do not evolve by themselves—they evolve as a duo, with the humans who design them and use them. Evolving along with the flying animals is the “human and machine species.”

The history of airplanes illustrates in our lifetime the evolutionary design of all fliers, animal, and human made, as they move on earth: farther, faster, more efficiently, and with greater lasting power (sustainability). Recent work has shown that the evolution of airplanes is predictable from the constructal law of design and evolution in nature.1,6 The main features of aircraft evolutionary design predicted from the constructal law are the speed, engine size, fuel load, range, and aspect ratios (wing span vs fuselage length, wing profile, fuselage profile). The same theory accounts for the alignment of 1950 aircraft data in Gabrielli and von Kármán's chart of specific power vs speed,7,8 which along with the broader method of evolutionary design continues to be of interest in the aircraft literature.9–14 The constructal law further predicts the time arrow of the change from propellers to jets, in the same way that for animal design it predicts the change (and the increase in movement complexity) from swimming to running and, finally, flying.

In this new article, we report a new domain where the constructal law manifests itself as the evolution of vehicle technology. We show that the classical alignment of helicopter designs can be anticipated based on the constructal law, and that it can be added to the grand evolutionary design of animal and vehicle movement on the globe.

The current findings can also be applied to foreseeing evolution of the emerging Unmanned Aerial Vehicles (UAVs). Starting from the last decade, the UAVs are gaining rapid popularity, which is attributed to the rapid advance and maturing of information technologies and autonomous capabilities.15,16 Many military and civil endeavors have served to showcase the potential of UAVs, such as aerial photography and selfie, border surveillance, highway traffic monitoring, wildfire management, agricultural chemical spraying, and other disaster response needs. An UAV, either rotorcraft or fixed-wing vehicle, is operated without pilots and does not carry any passengers. Nevertheless, the navigation is still the controlled body with the power source, which uses the dynamic lift and thrust based on fundamental aerodynamics.17 

We start with the dimensions and performance data of helicopter models during their 60-year history (Table I). The data are collected from Ref. 18 and the Type Certificate Data Sheet of FAA and EASA. Figures 1–4 show at first glance that during the evolution of helicopter technology, very sharp correlations have emerged between design features and body size.

TABLE I.

Helicopter models, and their dimensions and performance (m: military models).

ModelYearEngine modelNumber of enginesEngine mass (kg)Maximum T-O weight (kg)Radius of propeller (m)SFC (lb/shp h)Fuel capacity (l)
Alpi Syton AH 130 2008 Solar T62 64 580 3.82 N/A N/A 
Robinson R66 2010 RR 300 91 1225 5.03 N/A 282 
Bell 206A 1966 RR 250-C18B 64 1360 N/A 0.65 287.7 
MD 500E 1982 RR 250-C20B 71.7 1361 4.05 0.65 242 
Bell 206B 1971 RR 250-C20 71.7 1451.5 N/A 0.65 287.7 
MD 520N 1991 RR 250-C20R/2 76.7 1591 4.2 0.608 235 
MD 530F 1985 RR 250-C30 115.1 1610 4.16 0.592 242.3 
Airbus Helicopter SA 318C 1964 Turbomeca Astazou IIA 140 1650 5.1 0.623 580 
Airbus Helicopter EC120B 1997 Turbomeca Arrius 2F 103.5 1680 N/A 410 
Airbus Helicopter SA 341G 1972 Turboméca ASTAZOU IIIA 147.5 1800 5.25 N/A 457 
Bell 206L 1975 RR 250-C20B 71.7 1814.4 N/A 0.65 371 
MD 600N 1997 RR 250-C47M 126.3 1859 4.19 0.58 440 
Bell 206L-1 1978 RR 250-C28 106 1882 N/A 0.606 371 
Airbus Helicopter SA 342J 1976 Turboméca ASTAZOU XIV H 160 1900 5.25 N/A 457 
Airbus Helicopter AS 350B 1977 Turbomeca Arriel 1B 120 1950 5.46 0.573 540 
Airbus Helicopter SA 315B 1970 Turbomeca ARTOUSTE III B 173 1950 5.51 N/A 565 
Bell 206L-3 1981 RR 250-C30P 112.4 2018 N/A 0.592 419 
Airbus Helicopter AS 355E 1980 RR 250-C20F 71.7 2100 5.345 0.65 736 
Airbus Helicopter SA 316B 1970 Turbomeca Artouste IIC 178 2200 5.5 N/A 565 
Airbus Helicopter AS 350B3 1997 Turbomeca Arriel 2B 134 2250 5.35 N/A 540 
Airbus Helicopter SA 316C 1971 Turboméca ARTOUSTE III D 178 2250 5.51 N/A 565 
Airbus Helicopter SA 319B 1971 Turboméca ASTAZOU XIV B 160 2250 5.51 N/A 565 
Bell 407 1996 RR 250-C47B 113.85 2268 5.33 0.58 483.7 
Airbus Helicopter AS 355F 1981 RR 250-C20F 71.7 2300 5.345 0.65 736 
Agusta A109 1971 RR 250-C20 71.7 2450 5.5 0.65 550 
Agusta A109A 1976 RR 250-C20B 71.7 2600 5.5 0.65 550 
Airbus Helicopter AS 355N 1989 Turbomeca Arrius 1A 101.3 2600 5.345 N/A 736 
Airbus Helicopter EC135 T1 1996 Turbomeca Arrius 2B1 114 2630 5.1 N/A 680 
Agusta A109C 1989 RR 250-C20R/1 78.5 2720 5.5 0.608 N/A 
Airbus Helicopter EC135 P1 1996 PW 206B 118.9 2720 5.1 0.548 680 
Airbus Helicopter EC135 P2 2001 PW 206B2 117.2 2835 5.1 N/A 680 
Airbus Helicopter EC135 T2 2002 Turbomeca Arrius 2B2 114.3 2835 5.1 N/A 680 
MD Explorer 1996 PW206A 108 2835 5.15 0.574 564 
Agusta A109K2 1992 TURBOMECA Arriel 1K1 123 2850 5.5 N/A 468 
AW119MKII 2007 PT6B-37A 184.8 2850 5.415 N/A 595 
Bell 427 2000 PW207D 113.7 2970 N/A 0.555 770L 
Agusta A109E Power 1996 Turbomeca Arrius 2K1 112.8 3000 5.5 N/A 595 
Airbus Helicopter EC635 P3 2015 PW 206B3 116.9 3000 5.2 N/A 680 
Agusta A109S 2005 PW207C 113.7 3175 5.415 N/A 563 
Bell 429 2009 HTS 900 142.9 3175 N/A 0.54 821L 
Airbus Helicopter BK117 A-4 1986 LTS 101-650B-1 127 3200 5.5 0.577 607.6 
Airbus Helicopter BK117 B-2 1992 LTS 101-750B 123 3350 5.5 0.577 697 
Bell 222 1983 LTS 101-650C-3/3A 109 3560 6.1 0.572 670 
Airbus Helicopter BK117 C-2 2000 Turbomeca Arriel 1E2 125 3585 5.5 N/A N/A 
Airbus Helicopter EC145 2002 Turbomeca Arriel 1E2 125 3585 5.5 N/A 879 
Mi-2 1965 PZL GTD-350W 140 3700 7.25 0.817 N/A 
Bell 222B 1983 LTS 101-750C-1 111 3742 N/A 0.577 709 
Bell 230 1992 RR 250-C30G2 117.93 3810 N/A 0.592 709 
Bell 204B 1963 T5309A 220 3855 6.35 N/A 605 
Bell 205A 1968 T5311A 225 3855 N/A 0.68 832.8 
Airbus Helicopter SA 365N 1981 Turbomeca Arriel 1C 116 4000 5.965 N/A 1144.7 
(m) Kawasaki OH-1 2000 TS1-M-10 152 4000 5.8 N/A N/A 
Airbus Helicopter SA 365N1 1983 Turbomeca Arriel 1C1 118 4100 5.972 N/A 1134.5 
Bell 430 1999 RR 250-C40B 127 4218 6.4 0.57 710L 
Airbus Helicopter AS 365N2 1989 Turbomeca Arriel 1C2 119 4250 5.972 N/A 1134.5 
Airbus Helicopter AS 365N3 1997 Turbomeca Arriel 2C 131 4300 5.972 N/A 1134.5 
Bell 205A-1 1968 T5313A 246.8 4309 N/A 0.58 832.8 
(m) Bell UH-1H 1970 T53-L-13B 247 4309 N/A 0.6 789 
(m) Bell AH-1F 1995 T53-L-703 247 4500 6.8 0.568 N/A 
Mitsubishi MH 2000 1996 Mitsubishi MG5-110 154 4500 6.1 N/A N/A 
(m) US Helicopter AH-1S 1996 T53-L-703 247 4536 N/A 0.568 511 
Sikorsky S-76A 1978 RR 250-C30 115.1 4762 N/A 0.592 1084 
Bell 210 2005 T5317B 248 4762.7 N/A N/A 780 
Airbus Helicopter EC155B 1998 Turbomeca Arriel 2C1 129.2 4800 6.3 N/A 1256 
Airbus Helicopter EC155B1 2002 Turbomeca Arriel 2C2 131.5 4920 6.3 N/A 1256 
Bell 212 1971 PT6T-3B 299 5080 7.32 0.596 N/A 
(m)AW Lynx 1990 RR Gem 42 183 5125 N/A 0.65 N/A 
Sikorsky S-76B 1985 PT6B-36 169 5307 6.7 0.594 1084 
Sikorsky S-76C 1991 Turbomeca Arriel 2S1 131.2 5307 N/A N/A 1084 
Sikorsky S-76D 2012 PW210S 162.4 5386 N/A N/A 1128 
Bell 412 1983 PT6T-3B 299 5397 0.596 N/A 
Bell 412EP 1994 PT6T-3D 325 5397 N/A 0.601 1277.5 
Kaman K-Max 1994 T5317A 256 5443 7.35 0.59 N/A 
HAL Dhruv 2002 Turbomeca TM333-2B2 156 5500 6.6 0.529 N/A 
Sikorsky S-58T 1972 PT6T-6 305 5897 N/A 0.592 1400 
(m) Airbus Helicopters Tiger 1991 MTR 390 154 6000 N/A N/A N/A 
AW 159 2009 CTS800-4N 173.7 6000 6.5 0.448 N/A 
W-3 Sokol 1979 PZL-10W 141 6400 7.85 0.598 N/A 
(m) Bell AH-1W 1980 T700-GE-401 197 6690 7.3 0.464 N/A 
Kamov Ka-60 2010 RD-600 V 220 6750 6.75 N/A N/A 
Airbus Helicopters SA 330J 1976 Turboméca Turmo IV C 230 7400 7.95 0.629 1565 
(m) Boeing–Sikorsky RAH66A 1996 T800-LHT-801 149.7 7896 5.95 0.462 N/A 
Bell 214ST 1982 CT7-2A 212 7938 7.92 0.473 N/A 
(m) Bell-UH-1Y 2008 T700-GE-401C 208 8391 7.44 0.459 1438 
Airbus Helicopter AS 332L1 1984 Turbomeca Makila 1A1 241 8600 7.8 0.481 2043 
Airbus Helicopters AS 332 L2 1986 Turboméca Makila 1A2 247 9300 8.1 N/A 2043 
(m) Boeing AH 64D 1995 RTM 322-01/12 249 9525 7.3 0.45 N/A 
(m) Sikorsky HH-60G 1991 T700-GE-700 198 9900 7.05 0.459 N/A 
(m) NHIndustries NH90 2007 RTM 322-01/9 233 10 600 8.15 0.42 N/A 
(m) NHIndustries NH90 NFH/TTH 2013 T700-GE-T6E 220 10 600 N/A 0.434 N/A 
Airbus Helicopter EC225LP 2004 Turbomeca Makila 2A 279 11 000 8.1 N/A 2588 
(m) Mi-35M 2005 TV3-117VMA 310 11 500 N/A 0.473 N/A 
Airbus Helicopter EC725 2005 Turbomeca Makila 1A4 247 11 751 8.1 N/A N/A 
(m) Mi-24 1972 TV3-117V 285 12 000 8.65 0.485 N/A 
Sikorsky S-92 2002 CT7-8A 246 12 020 8.58 0.452 2896 
Airbus Helicopter SA 321F 1993 Turbomeca Turmo IIIC3 225 13 000 9.45 0.603 N/A 
(m) Mi-17 1977 VK-2500 295 13 500 10.63 0.485 N/A 
Mi-38 2003 TV7-117V 360 14 200 10.55 0.439 3942 
AW EH101-500 1994 CT7-6 220 14 290 9.3 0.47 4235 
(m) AW EH101-400 2003 RTM 322-02/8 248 14 600 9.3 0.45 N/A 
(m) Mi-26 1983 Lotarev D-136 1050 56 000 16 0.456 N/A 
ModelYearEngine modelNumber of enginesEngine mass (kg)Maximum T-O weight (kg)Radius of propeller (m)SFC (lb/shp h)Fuel capacity (l)
Alpi Syton AH 130 2008 Solar T62 64 580 3.82 N/A N/A 
Robinson R66 2010 RR 300 91 1225 5.03 N/A 282 
Bell 206A 1966 RR 250-C18B 64 1360 N/A 0.65 287.7 
MD 500E 1982 RR 250-C20B 71.7 1361 4.05 0.65 242 
Bell 206B 1971 RR 250-C20 71.7 1451.5 N/A 0.65 287.7 
MD 520N 1991 RR 250-C20R/2 76.7 1591 4.2 0.608 235 
MD 530F 1985 RR 250-C30 115.1 1610 4.16 0.592 242.3 
Airbus Helicopter SA 318C 1964 Turbomeca Astazou IIA 140 1650 5.1 0.623 580 
Airbus Helicopter EC120B 1997 Turbomeca Arrius 2F 103.5 1680 N/A 410 
Airbus Helicopter SA 341G 1972 Turboméca ASTAZOU IIIA 147.5 1800 5.25 N/A 457 
Bell 206L 1975 RR 250-C20B 71.7 1814.4 N/A 0.65 371 
MD 600N 1997 RR 250-C47M 126.3 1859 4.19 0.58 440 
Bell 206L-1 1978 RR 250-C28 106 1882 N/A 0.606 371 
Airbus Helicopter SA 342J 1976 Turboméca ASTAZOU XIV H 160 1900 5.25 N/A 457 
Airbus Helicopter AS 350B 1977 Turbomeca Arriel 1B 120 1950 5.46 0.573 540 
Airbus Helicopter SA 315B 1970 Turbomeca ARTOUSTE III B 173 1950 5.51 N/A 565 
Bell 206L-3 1981 RR 250-C30P 112.4 2018 N/A 0.592 419 
Airbus Helicopter AS 355E 1980 RR 250-C20F 71.7 2100 5.345 0.65 736 
Airbus Helicopter SA 316B 1970 Turbomeca Artouste IIC 178 2200 5.5 N/A 565 
Airbus Helicopter AS 350B3 1997 Turbomeca Arriel 2B 134 2250 5.35 N/A 540 
Airbus Helicopter SA 316C 1971 Turboméca ARTOUSTE III D 178 2250 5.51 N/A 565 
Airbus Helicopter SA 319B 1971 Turboméca ASTAZOU XIV B 160 2250 5.51 N/A 565 
Bell 407 1996 RR 250-C47B 113.85 2268 5.33 0.58 483.7 
Airbus Helicopter AS 355F 1981 RR 250-C20F 71.7 2300 5.345 0.65 736 
Agusta A109 1971 RR 250-C20 71.7 2450 5.5 0.65 550 
Agusta A109A 1976 RR 250-C20B 71.7 2600 5.5 0.65 550 
Airbus Helicopter AS 355N 1989 Turbomeca Arrius 1A 101.3 2600 5.345 N/A 736 
Airbus Helicopter EC135 T1 1996 Turbomeca Arrius 2B1 114 2630 5.1 N/A 680 
Agusta A109C 1989 RR 250-C20R/1 78.5 2720 5.5 0.608 N/A 
Airbus Helicopter EC135 P1 1996 PW 206B 118.9 2720 5.1 0.548 680 
Airbus Helicopter EC135 P2 2001 PW 206B2 117.2 2835 5.1 N/A 680 
Airbus Helicopter EC135 T2 2002 Turbomeca Arrius 2B2 114.3 2835 5.1 N/A 680 
MD Explorer 1996 PW206A 108 2835 5.15 0.574 564 
Agusta A109K2 1992 TURBOMECA Arriel 1K1 123 2850 5.5 N/A 468 
AW119MKII 2007 PT6B-37A 184.8 2850 5.415 N/A 595 
Bell 427 2000 PW207D 113.7 2970 N/A 0.555 770L 
Agusta A109E Power 1996 Turbomeca Arrius 2K1 112.8 3000 5.5 N/A 595 
Airbus Helicopter EC635 P3 2015 PW 206B3 116.9 3000 5.2 N/A 680 
Agusta A109S 2005 PW207C 113.7 3175 5.415 N/A 563 
Bell 429 2009 HTS 900 142.9 3175 N/A 0.54 821L 
Airbus Helicopter BK117 A-4 1986 LTS 101-650B-1 127 3200 5.5 0.577 607.6 
Airbus Helicopter BK117 B-2 1992 LTS 101-750B 123 3350 5.5 0.577 697 
Bell 222 1983 LTS 101-650C-3/3A 109 3560 6.1 0.572 670 
Airbus Helicopter BK117 C-2 2000 Turbomeca Arriel 1E2 125 3585 5.5 N/A N/A 
Airbus Helicopter EC145 2002 Turbomeca Arriel 1E2 125 3585 5.5 N/A 879 
Mi-2 1965 PZL GTD-350W 140 3700 7.25 0.817 N/A 
Bell 222B 1983 LTS 101-750C-1 111 3742 N/A 0.577 709 
Bell 230 1992 RR 250-C30G2 117.93 3810 N/A 0.592 709 
Bell 204B 1963 T5309A 220 3855 6.35 N/A 605 
Bell 205A 1968 T5311A 225 3855 N/A 0.68 832.8 
Airbus Helicopter SA 365N 1981 Turbomeca Arriel 1C 116 4000 5.965 N/A 1144.7 
(m) Kawasaki OH-1 2000 TS1-M-10 152 4000 5.8 N/A N/A 
Airbus Helicopter SA 365N1 1983 Turbomeca Arriel 1C1 118 4100 5.972 N/A 1134.5 
Bell 430 1999 RR 250-C40B 127 4218 6.4 0.57 710L 
Airbus Helicopter AS 365N2 1989 Turbomeca Arriel 1C2 119 4250 5.972 N/A 1134.5 
Airbus Helicopter AS 365N3 1997 Turbomeca Arriel 2C 131 4300 5.972 N/A 1134.5 
Bell 205A-1 1968 T5313A 246.8 4309 N/A 0.58 832.8 
(m) Bell UH-1H 1970 T53-L-13B 247 4309 N/A 0.6 789 
(m) Bell AH-1F 1995 T53-L-703 247 4500 6.8 0.568 N/A 
Mitsubishi MH 2000 1996 Mitsubishi MG5-110 154 4500 6.1 N/A N/A 
(m) US Helicopter AH-1S 1996 T53-L-703 247 4536 N/A 0.568 511 
Sikorsky S-76A 1978 RR 250-C30 115.1 4762 N/A 0.592 1084 
Bell 210 2005 T5317B 248 4762.7 N/A N/A 780 
Airbus Helicopter EC155B 1998 Turbomeca Arriel 2C1 129.2 4800 6.3 N/A 1256 
Airbus Helicopter EC155B1 2002 Turbomeca Arriel 2C2 131.5 4920 6.3 N/A 1256 
Bell 212 1971 PT6T-3B 299 5080 7.32 0.596 N/A 
(m)AW Lynx 1990 RR Gem 42 183 5125 N/A 0.65 N/A 
Sikorsky S-76B 1985 PT6B-36 169 5307 6.7 0.594 1084 
Sikorsky S-76C 1991 Turbomeca Arriel 2S1 131.2 5307 N/A N/A 1084 
Sikorsky S-76D 2012 PW210S 162.4 5386 N/A N/A 1128 
Bell 412 1983 PT6T-3B 299 5397 0.596 N/A 
Bell 412EP 1994 PT6T-3D 325 5397 N/A 0.601 1277.5 
Kaman K-Max 1994 T5317A 256 5443 7.35 0.59 N/A 
HAL Dhruv 2002 Turbomeca TM333-2B2 156 5500 6.6 0.529 N/A 
Sikorsky S-58T 1972 PT6T-6 305 5897 N/A 0.592 1400 
(m) Airbus Helicopters Tiger 1991 MTR 390 154 6000 N/A N/A N/A 
AW 159 2009 CTS800-4N 173.7 6000 6.5 0.448 N/A 
W-3 Sokol 1979 PZL-10W 141 6400 7.85 0.598 N/A 
(m) Bell AH-1W 1980 T700-GE-401 197 6690 7.3 0.464 N/A 
Kamov Ka-60 2010 RD-600 V 220 6750 6.75 N/A N/A 
Airbus Helicopters SA 330J 1976 Turboméca Turmo IV C 230 7400 7.95 0.629 1565 
(m) Boeing–Sikorsky RAH66A 1996 T800-LHT-801 149.7 7896 5.95 0.462 N/A 
Bell 214ST 1982 CT7-2A 212 7938 7.92 0.473 N/A 
(m) Bell-UH-1Y 2008 T700-GE-401C 208 8391 7.44 0.459 1438 
Airbus Helicopter AS 332L1 1984 Turbomeca Makila 1A1 241 8600 7.8 0.481 2043 
Airbus Helicopters AS 332 L2 1986 Turboméca Makila 1A2 247 9300 8.1 N/A 2043 
(m) Boeing AH 64D 1995 RTM 322-01/12 249 9525 7.3 0.45 N/A 
(m) Sikorsky HH-60G 1991 T700-GE-700 198 9900 7.05 0.459 N/A 
(m) NHIndustries NH90 2007 RTM 322-01/9 233 10 600 8.15 0.42 N/A 
(m) NHIndustries NH90 NFH/TTH 2013 T700-GE-T6E 220 10 600 N/A 0.434 N/A 
Airbus Helicopter EC225LP 2004 Turbomeca Makila 2A 279 11 000 8.1 N/A 2588 
(m) Mi-35M 2005 TV3-117VMA 310 11 500 N/A 0.473 N/A 
Airbus Helicopter EC725 2005 Turbomeca Makila 1A4 247 11 751 8.1 N/A N/A 
(m) Mi-24 1972 TV3-117V 285 12 000 8.65 0.485 N/A 
Sikorsky S-92 2002 CT7-8A 246 12 020 8.58 0.452 2896 
Airbus Helicopter SA 321F 1993 Turbomeca Turmo IIIC3 225 13 000 9.45 0.603 N/A 
(m) Mi-17 1977 VK-2500 295 13 500 10.63 0.485 N/A 
Mi-38 2003 TV7-117V 360 14 200 10.55 0.439 3942 
AW EH101-500 1994 CT7-6 220 14 290 9.3 0.47 4235 
(m) AW EH101-400 2003 RTM 322-02/8 248 14 600 9.3 0.45 N/A 
(m) Mi-26 1983 Lotarev D-136 1050 56 000 16 0.456 N/A 
FIG. 1.

Bigger engines are more efficient: the correlation between engine efficiency and engine size. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes ηH=0.53Me0.25, with R2 = 0.79.

FIG. 1.

Bigger engines are more efficient: the correlation between engine efficiency and engine size. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes ηH=0.53Me0.25, with R2 = 0.79.

Close modal
FIG. 2.

Bigger engines belong on bigger helicopters: the proportionality between engine mass and helicopter mass. The first graph shows the linear correlation of the data of Table I; the second graph shows the power-law correlation. In the indicated correlations, the military helicopter data (the black circles) were not included. If the military data are included, the linear correlation becomes Me = 0.05 M, R2 = 0.87, and the power-law becomes Me = 0.24 M0.83, R2 = 0.90.

FIG. 2.

Bigger engines belong on bigger helicopters: the proportionality between engine mass and helicopter mass. The first graph shows the linear correlation of the data of Table I; the second graph shows the power-law correlation. In the indicated correlations, the military helicopter data (the black circles) were not included. If the military data are included, the linear correlation becomes Me = 0.05 M, R2 = 0.87, and the power-law becomes Me = 0.24 M0.83, R2 = 0.90.

Close modal
FIG. 3.

The proportionality between fuel load and engine size. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes Me = 0.29 Mf, with R2 = 0.79.

FIG. 3.

The proportionality between fuel load and engine size. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes Me = 0.29 Mf, with R2 = 0.79.

Close modal
FIG. 4.

Bigger propellers belong on bigger helicopters: the rough proportionality between propeller radius and helicopter length scale, or body mass raised to the power 1/3. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes Rp = 0.47 M0.31, with R2 = 0.88.

FIG. 4.

Bigger propellers belong on bigger helicopters: the rough proportionality between propeller radius and helicopter length scale, or body mass raised to the power 1/3. In the indicated correlation, the military helicopter data (the black circles) were not included. If the military data are included, the correlation becomes Rp = 0.47 M0.31, with R2 = 0.88.

Close modal

Each of Figures 1–4 display the helicopter data of Table I with two symbols. The black circles indicate military helicopters. The empty circles are for the rest of the data compiled in Table I. The purpose of this two-frame display of the body-size effect on evolutionary design is to show that the correlations that emerge are somewhat sharper when the military models are excluded (note the relatively larger R2 values). This finding makes sense because the evolution of military models is driven by an objective (mission) that is not exactly the same as the objective of civilian helicopter models.

For conciseness, the analytical formulas that correlate the data (without the military data) are reported directly on each of the graphs of Figs. 1–4. Indicated is also the R2 value of each correlation, which shows that the correlation is statistically meaningful. The corresponding correlations obtained by including the military data are indicated in the respective figure captions. In these empirical formulas, the masses (M, Me, Mf) are expressed in kg, the propeller radius Rp is expressed in m, and the heating value of the fuel (H) is expressed in shp h/lb (or 5.9 × 106 J/kg), where shp means shaft horse power. The engine efficiency η is defined in Section III.

Figure 1 shows that the efficiencies (η) of helicopter engines have evolved such that η is proportional to the engine size (Me) raised to a power that is less than 1. This is in accord with the prediction based on the constructal law,4 according to which η should vary as Meα, where α < 1.

In Fig. 2, we see the correlation of the engine size (Me) versus vehicle size. The two frames, together, reveal an approximate proportionality between engine size and body size, and, in addition, a ratio Me/M that is in the order of 1/10. This finding is the same as in the engine size versus body size scaling exhibited by the evolution of airplanes.6 

Figure 3 shows that the engine size and the fuel load have emerged to be proportional over a size range that spans one full order of magnitude. The engine mass is roughly one third of the fuel load mass over this entire range. This too agrees with the trend uncovered for the evolution of aircraft.6 

Figure 4 reveals the correlation that emerged between the helicopter propeller radius (Rp) and the vehicle size, which is represented by the maximum take-off mass (M). The figure shows that the propeller radius varies monotonically with the vehicle size, where Rp emerged as proportional to M0.3. Because the vehicle size M is proportional to the vehicle length scale cubed (L3), the proportionality between Rp and M0.3 means that Rp is essentially proportional to L.

The geometric meaning of the body-size scaling revealed by Fig. 4 is that the propeller radius scales with the length scale of the vehicle, and that all helicopters (large and small, old and new) are geometrically similar. This conclusion is the same as the one reached in the study of the evolution of aircraft, where all aircraft evolve to be geometrically similar, with the wing span almost the same as the fuselage length.6 

The geometric similarity of old and new helicopter models is evident in Fig. 5. Furthermore, the figure shows that during the past five decades the specific fuel consumption (SFC) has decreased to half of its original level. This too is in accord with the evolution of the specific fuel consumption of commercial aircraft (measured in liters of fuel spent for one seat and 100 km flown).6 The specific fuel consumption plotted in Fig. 5 is defined in Section III.

FIG. 5.

The evolution of the specific fuel consumption of helicopters during the past five decades. The black circles indicate military helicopters (see “m” in Table I).

FIG. 5.

The evolution of the specific fuel consumption of helicopters during the past five decades. The black circles indicate military helicopters (see “m” in Table I).

Close modal

As shown in studies of the evolution of commercial aircraft and animals,6,8,19–21 theory can deepen our understanding of the origin of body-size scaling. We start with the observation that a hovering aircraft such as a helicopter can move in all directions. Chief among these is the vertical direction: the main function of the aircraft is to hover, i.e., to maintain its altitude above ground. Secondary is the sliding movement in the horizontal direction. The simplest model is the one that retains the fewest and most important features of the actual physical system. This is why we begin with the assumption that the hovering body is stationary at its altitude, while consuming fuel to maintain itself in this position for the longest time possible.

Thermodynamics shows that larger flow systems function less irreversibly, because their flows encounter smaller obstacles, such as wider ducts and larger heat transfer areas in heat exchangers. The monotonic effect of size on efficiency was predicted in Ref. 4. The mathematical conclusion is that if the size of the engine is represented by its mass Me, then the energy conversion efficiency of the engine evolves such that it increases monotonically with size

(1)

where c1 is a constant factor. The α exponent is comparable with 1, and must be less than 1 because the η curve must be concave with respect to Me: this is because in accord with thermodynamics, the efficiency cannot surpass an ideal level, a ceiling. The more mature the engine technology, the higher the efficiency, the closer to the ideal level, and the smaller the α exponent. The engine efficiency is defined as

(2)

where P is the shaft power from engine, t is the time of hovering, H is the heating value of the fuel, and Mf is the mass of consumed fuel. The specific fuel consumption (SFC) is the quantity of fuel consumed in order to produce one unit of power in one unit of time22 

(3)

By comparing Eq. (3) with Eq. (2), we see that

(4)

or, ηH=1/SFC. By using the helicopter data compiled in Table I, we found the correlation shown in Fig. 1.

The rotor hovering efficiency (ηp) is defined as the ratio of the minimum possible power required to hover (induced power) to the actual power required to hover (shaft power). The total hover power is a value that can be obtained only by measurement. Unfortunately, we did not have access to measurements of performance. In any case, care must be taken when comparing rotors. Only rotors with the same disk loading should be compared. Testing is the only way to figure out the relationship between the ηp and the radius of the propeller. Noteworthy is the study23 that reported the static testing of micro propellers. A load cell and a torque transducer were used to measure the thrust and torque created by the propeller. The results show that a larger-diameter propeller tends to be more efficient, which is in accord with the body-size effect anticipated with the constructal law.1,4 At the design loading of the rotor, a value of ηp = 0.55–0.60 is typical. Because of this narrow range, in the following analysis we treat ηp as a constant.

The size of the hovering aircraft is represented by its total mass M, which accounts for everything that hovers, engine (Me), propeller (Mp), fuel (Mf) and the rest of the body frame (Mb)

(5)

Assume that the engine mass Me varies, while the other masses do not vary. Consequently, the total mass changes with the engine mass. We explore the idea that there is a certain relationship between the engine mass and the total helicopter mass when considering that best performance means maximum hovering time for a given amount of fuel. To start, from Eq. (2) we find that the engine power output is

(6)

The engine power is responsible for the force (the thrust, T) that holds the hovering body at constant altitude. The relationship between P and T is

(7)

where T and V are the thrust and the induced air velocity, respectively.22 The induced velocity is V = (T/2ρA)1/2, where ρ is air density, and A is the rotor disk, i.e., the circular area swept by the blades of the rotor. The vertical equilibrium of the hovering body requires

(8)

Combining Eqs. (6)–(8), where t is the duration of the hovering flight, we obtain

(9)

where K=0.56Mfηpg3/2(2ρ)1/2 is treated as constant, and M varies linearly with Me as shown in Eq. (5). The maximum hovering time is obtained by maximizing t with respect to Me, and the result is

(10)

In conclusion, the evolutionary designs should tend toward vehicles with a certain proportion between engine size and total body size. This is in accord with the empirical correlation found in Fig. 2 and is the same as the proportionality between muscle mass and total body mass in animal design19–21 and the proportionality between engine mass and total mass in airplane design.1,6

In Fig. 4, we saw that a larger helicopter carries larger blades. A relation between Rp and M is22 

(11)

Under hovering conditions, CT/σ can be thought of as the lift coefficient per blade. The number of blades is N. Here, it is assumed that the mean angle of attack of the blade is a constant. The thrust coefficient CT is equal to T/[ρA(R Ω)2], where Ω is angular speed of the rotor, σ is the rotor solidity, which is equal to Nc/(πRp) where c is the chord of the blade. Equation (11) becomes

(12)

and, in view of T = Mg, we arrive at the proportionality

(13)

This is in agreement with Fig. 4, which shows that if a power function is used for curve-fitting, then Rp emerges as proportional to M0.3. This means that Rp is roughly proportional to the length scale of the helicopter, which is proportional to M1/3. This agrees with a correlation of data reported in Ref. 24.

In summary, the evolution of helicopters adds itself to the universal phenomenon of evolution,1,25 which is exhibited by all flow systems that are free to morph as they flow: animate, inanimate, and engineered. The latter are the technology evolutions responsible for empowered humans—the evolving human and machine species.1–3 The application of the constructal law to the evolution and spreading of UAVs recommends itself as a subject for future investigation.

The authors thank the Research Grants Council, Hong Kong, for the financial support under Contract No. C5010-14E. Professor Bejan also thanks the U.S. National Science Foundation for supporting his research activity during this period.

1.
A.
Bejan
,
The Physics of Life: The Evolution of Everything
(
St. Martin's Press
,
New York
,
2016
).
2.
A.
Bejan
,
Shape and Structure, from Engineering to Nature
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
3.
A.
Bejan
and
S.
Lorente
, “
The constructal law and the evolution of design in nature
,”
Phys. Life Rev.
8
,
209
240
(
2011
).
4.
A.
Bejan
, “
Why the bigger live longer and travel farther: Animals, vehicles, rivers and the winds
,”
Sci. Rep.
2
,
594
(
2012
).
5.
A.
Bejan
, “
Rolling stones and turbulent eddies: Why the bigger live longer and travel farther
,”
Sci. Rep.
6
,
21445
(
2016
).
6.
A.
Bejan
,
J. D.
Charles
, and
S.
Lorente
, “
The evolution of airplanes
,”
J. Appl. Phys.
116
,
044901
(
2014
).
7.
G.
Gabrielli
and
Th.
von Kármán
, “
What Price Speed?
,”
Mech. Eng.
72
,
775
781
(
1950
).
8.
A.
Bejan
,
J. D.
Charles
,
S.
Lorente
, and
E. H.
Dowell
, “
Evolution of airplanes, and What price speed?
,”
AIAA J.
54
,
1116
1119
(
2016
).
9.
S.
Teitler
and
R. E.
Proodian
, “
What price speeds, revisited
,”
J. Energy
4
,
46
48
(
1980
).
10.
B. H.
Carson
, “
Fuel efficiency of small aircraft
,”
J. Aircr.
19
,
473
479
(
1982
).
11.
J.
Yong
,
R.
Smith
,
L.
Hatano
, and
S.
Hillmansen
, “
What price speed – revisited
,”
Ingenia
22
,
46
51
(
2005
).
12.
D.
Paul
,
L.
Kelly
, and
V.
Venkayya
, “
Evolution of U. S. Military aircraft structures technology
,”
J. Aircr.
39
,
18
29
(
2002
).
13.
Y. S.
Ong
,
P. B.
Nair
, and
A. J.
Keane
, “
Evolutionary optimization of computationally expensive problems via surrogate modeling
,”
AIAA J.
41
,
687
696
(
2003
).
14.
K.
Chiba
,
Y.
Makino
, and
T.
Takatoya
, “
Evolutionary-based multidisciplinary design exploration for the silent supersonic technology demonstrator wing
,”
J. Aircr.
45
,
1481
1494
(
2008
).
15.
M. S.
Francis
, “
Unmanned air systems: Challenge and opportunity
,”
J. Aircr.
49
(
6
),
1652
1665
(
2012
).
16.
M. S.
Francis
, “
Design of next generation unmanned air systems—issues and opportunities
,” in
AIAA 2008-8978, The 26th Congress of International Council of the Aeronautical Sciences (ICAS)
,
14–19 September 2008
,
Anchorage, Alaska
.
17.
K.
Nonami
, “
Prospect and recent research and development for civil use autonomous unmanned aircraft as UAV and MAV
,”
J. Syst. Des. Dyn.
1
(
2
),
120
128
(
2007
).
18.
P.
Jackson
,
K.
Munson
, and
L.
Peacock
,
Jane's all the World Aircraft
(
Jane's Information Group
,
London
,
1995–1996
).
19.
K.
Schmidt-Nielsen
,
Scaling: Why Is Animal Size So Important?
(
Cambridge University Press
,
Cambridge, UK
,
1984
).
20.
E. R.
Weibel
,
Symmorphosis: On Form and Function in Shaping Life
(
Harvard University Press
,
Cambridge, MA
,
2000
).
21.
B. K.
Ahlborn
,
Zoological Physics
(
Springer
,
Berlin
,
2004
).
22.
W.
Johnson
,
Helicopter Theory
(
Dover
,
New York
,
1994
).
23.
J. B.
Brandt
and
M. S.
Selig
, “
Propeller performance data at low Reynolds numbers
,” in
49th AIAA Aerospace Sciences Meeting
,
4–7 January 2011
,
Orlando, FL
, AIAA Paper No. 2011-1255, 2011.
24.
W.
Johnson
,
Rotocraft Aeromechanics
(
Cambridge University Press
,
New York
,
2013
).
25.
A.
Bejan
, “
Maxwell's demons everywhere: Evolving design as the arrow of time
,”
Sci. Rep.
4
,
4017
(
2014
).