The early stages of the expansion of fully ionized cathode spot cathodic arc plasmas from a localized initial volume are simulated by an all particle molecular dynamics model. The particles are given an initial temperature and interact by Coulomb forces. Although there are limits on the number of particles and the starting density, the model is relevant in describing processes occurring in cells that are the smallest structures of a cathodic arc. Our model predicts that a cell undergoes an explosive expansion leading to a halo of electrons surrounding an ion-rich core. The ion kinetic energies are lower than experimental observation but may be consistent with them after extrapolation to higher initial densities. For mixed charge state plasmas, the ion kinetic energy increases with ion charge state.

1.
B.
Juttner
,
IEEE Trans. Plasma Sci.
27
,
836
(
1999
).
2.
S. A.
Barengolts
,
G. A.
Mesyats
, and
D. L.
Shmelev
,
IEEE Trans. Plasma Sci.
31
,
809
(
2003
).
3.
J.
Rossignol
,
J. Phys. D
36
,
1495
(
2003
).
4.
E.
Hantzsche
,
IEEE Trans. Plasma Sci.
31
,
799
(
2003
).
5.
V. F.
Puchkarev
and
M. B.
Bochkarev
,
J. Phys. D
27
,
1214
(
1994
).
6.
F.
Schwirzke
,
M. P.
Hallal
, Jr.
, and
X. K.
Maruyama
,
IEEE Trans. Plasma Sci.
21
,
410
(
1993
).
8.
S. J.
Aareth
,
Gravitational N-Body Simulations
(
Cambridge University Press
,
New York
,
2003
).
9.
A.
Anders
and
G. Y.
Yushkov
,
J. Appl. Phys.
91
,
4824
(
2002
).
10.
F.
Richter
,
S.
Peter
,
V. B.
Filippov
,
G.
Flemming
, and
M.
Kuhn
,
IEEE Trans. Plasma Sci.
27
,
1079
(
1999
).
11.
W. D.
Davis
and
H. C.
Miller
,
J. Appl. Phys.
40
,
2212
(
1969
).
12.
H. C.
Miller
,
J. Appl. Phys.
66
,
1107
(
1989
).
13.
G. Y.
Yushkov
,
A.
Anders
,
E. M.
Oks
, and
I. G.
Brown
,
J. Appl. Phys.
88
,
5618
(
2000
).
You do not currently have access to this content.