Micromanipulation is an emerging technology in such diverse areas as precision engineering, microfabrication, and microsurgery. Each of these areas impose certain technological constraints and requirements in fabrication, actuation, and control. This paper performs a review on the latest technologies of microrobotic actuation techniques and suggests a suitable technique for the actuation of a magnetically levitated microrobot. The microrobot, suspended in an externally produced magnetic field, consists of a gripper attached to a series of permanent magnets and is capable of simple pick and place tasks. A number of electromagnets produce the external magnetic field and three laser sensors feedback the position of the levitated microrobot. Through finite element analysis, performance of the levitation system was investigated, and simulations and experiments were carried out to demonstrate the practical capabilities of the proposed system.

1.
K. I.
Arai
and
T.
Honda
,
J. Rob. Syst.
14
,
477
(
1996
).
2.
P.
Dario
,
R.
Valleggi
,
M. C.
Carrozza
,
M. C.
Montesi
, and
M.
Cocco
,
J. Micromech. Microeng.
2
,
141
(
1992
).
3.
M. B.
Khamesee
,
N.
Kato
,
Y.
Nomura
, and
T.
Nakamura
,
IEEE/ASME Trans. Mechatron.
7
,
1
(
2002
).
4.
K. J.
Yoon
,
K. H.
Park
,
S. K.
Lee
,
N. S.
Goo
, and
H. C.
Park
,
Smart Mater. Struct.
13
,
459
(
2004
).
5.
M.
Sitti
,
D.
Campolo
,
J.
Yan
,
R. S.
Fearing
,
T.
Su
,
D.
Taylor
, and
T. D.
Sands
, “
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms
,”
Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001)
, Seoul, South Korea, May
2001
, Vol.
4
, pp.
3839
3846
.
6.
T.
Homma
,
S.
Ino
,
H.
Kuroki
,
T.
Izumi
, and
T.
Ifukube
, “
Development of a piezoelectric actuator for presentation of various tactile stimulation patterns to fingerpad skin
,”
Proceedings of 26th Annual International Conference of Engineering in Medicine and Biology Society (EMBC 2004)
, San Francisco, CA, September
2004
, Vol.
26
VII, pp.
4960
4963
.
7.
J. K.
Song
and
G.
Washington
,
IEEE/ASME Trans. Mechatron.
5
,
49
(
2000
).
8.
K. M.
Mossi
and
R. P.
Bishop
, “
Characterization of different types of high performance THUNDER TM actuators
,”
Proceedings of the 1999 Smart Structures and Materials on Smart Materials Technologies
, Newport Beach, CA, March
1999
, pp.
43
52
.
9.
A.
Alasty
and
E.
Shameli
, “
Dynamic modeling of a new varying stress SMA actuator for precise applications
,”
Proceedings of the IEEE International Conference on Mechatronics 2004 (ICM'04)
, Istanbul, Turkey, June
2004
, pp.
209
214
.
10.
M.
Shahinpour
,
Electrochim. Acta
48
,
2343
(
2003
).
11.
A.
Ferreira
,
J.
Agnus
,
N.
Chaillet
, and
J. M.
Breguet
,
IEEE/ASME Trans. Mechatron.
9
,
508
(
2004
).
12.
H.
Zhang
,
Y.
Bellouard
,
E.
Burdet
,
R.
Clavel
,
A. N.
Poo
, and
D. W.
Hutmacher
, “
Shape memory alloy microgripper for robotic microassembly of tissue engineering scaffolds
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
, New Orleans, LA, April
2004
, pp.
4918
4924
.
13.
R. C.
Hibbeler
,
Mechanics of Materials
, 4th ed. (
Prentice-Hall
, Englewood Cliffs, NJ,
2000
).
14.
R. G.
Gilbertson
,
Muscle Wires Project Book
, 3rd ed. (
Mondo-tronics Inc.
, San Rafael, CA,
2000
).
You do not currently have access to this content.