Bacterial samples (Escherichia coli and Bacillus subtilis) have been analyzed by laser-induced breakdown spectroscopy (LIBS) using femtosecond pulses. We compare the obtained spectra with those resulting from the classical nanosecond LIBS. Specific features of femtosecond LIBS have been demonstrated, very attractive for analyzing biological sample: (i) a lower plasma temperature leading to negligible nitrogen and oxygen emissions from excited ambient air and a better contrast in detection of trace mineral species; and (ii) a specific ablation regime that favors intramolecular bonds emission with respect to atomic emission. A precise kinetic study of molecular band head intensities allows distinguishing the contribution of native CN bonds released by the sample from that due to carbon recombination with atmospheric nitrogen. Furthermore a sensitive detection of trace mineral elements provide specific spectral signature of different bacteria. An example is given for the Gram test provided by different magnesium emissions from Escherichia coli and Bacillus subtilis. An entire spectrum consists of hundred resolved lines belonging to 13 atomic or molecular species, which provides an ensemble of valuable data to identify different bacteria.

1.
A. C.
Samuels
,
F. C.
De Lucia
, Jr.
,
K. L.
McNesby
, and
A. W.
Miziolek
,
Appl. Opt.
42
,
6205
(
2003
).
2.
S.
Morel
,
N.
Leon
,
P.
Adam
, and
J.
Amouroux
,
Appl. Opt.
42
,
6184
(
2003
).
3.
N.
Leone
,
G.
D’Arthur
, and
P.
Adam
,
High Tech. Plasma Process
8
,
1
(
2004
).
4.
C. A.
Munson
,
F. C.
De Lucia
, Jr.
,
T.
Piehler
,
K. L.
McNesby
, and
A. W.
Miziolek
,
Spectrochim. Acta, Part B
60
,
1217
(
2005
).
5.
A. R.
Boyain-Goitia
,
D. C. S.
Beddows
,
B. C.
Griffiths
, and
H. H.
Telle
,
Appl. Opt.
42
,
6119
(
2003
).
6.
P. B.
Dixon
and
D. W.
Hahn
,
Anal. Chem.
77
,
631
(
2005
).
7.
D. C. S.
Beddows
and
H. H.
Telle
,
Spectrochim. Acta, Part B
60
,
1040
(
2005
).
8.
Ph.
Rohwetter
,
K.
Stelmaszczyk
,
G.
Méjean
,
J.
Yu
,
E.
Salmon
,
J.
Kasparian
,
J.-P.
Wolf
, and
L.
Wöste
,
J. Anal. At. Spectrom.
19
,
437
(
2004
).
9.
K.
Stelmaszczyk
 et al,
Appl. Phys. Lett.
85
,
3977
(
2004
).
10.
Ph.
Rohwetter
 et al,
Spectrochim. Acta, Part B
60
,
1025
(
2005
).
11.
See, for example,
Proceedings of the Fifth International Conference on Laser Ablation
, edited by
J. S.
Horwitz
,
H.-U.
Krebs
,
K.
Murakami
, and
M.
Stuke
, in [
Appl. Phys. A: Mater. Sci. Process.
69
(
1999
)].
12.
B.
Le Drogoff
 et al,
Spectrochim. Acta, Part B
56
,
987
(
2001
).
13.
B.
Le Drogoff
,
J.
Margot
,
F.
Vidal
,
M.
Chaker
,
M.
Sabsabi
,
T. W.
Johnston
, and
O.
Barthélemy
,
Plasma Sources Sci. Technol.
13
,
223
(
2004
).
14.
X.
Zeng
,
X.
Mao
,
R.
Greif
, and
R. E.
Russo
,
Proc. SPIE
5448
,
1150
(
2004
).
15.
S. S.
Mao
,
X.
Mao
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. Lett.
77
,
2464
(
2000
).
16.
G. J.
Basttiaan
and
R. A.
Mangold
,
Spectrochim. Acta, Part B
40
,
885
(
1985
).
17.
T.
Lipper
,
A.
Wokaun
,
S. C.
Langford
, and
J. T.
Dickinson
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S655
(
1999
).
18.
R.
Srinivasan
and
B.
Braren
,
Chem. Rev. (Washington, D.C.)
89
,
1303
(
1989
).
19.
B. D.
Koplitz
and
J. K.
McVey
,
J. Phys. Chem.
89
,
4196
(
1985
).
20.
P.
Singleton
,
Bacteria in Biology, Biotechnology and Medicine
, 4th ed. (
Wiley
,
Chichester, England
,
1997
).
21.
C.
Vivien
,
J.
Hermann
,
A.
Perrone
,
C.
Boulmer-Leborgne
, and
A.
Luches
,
J. Phys. D
31
,
1263
(
1998
).
22.
L.
St-Onge
,
R.
Sing
,
S.
Béchard
, and
M.
Sabsabi
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S913
(
1999
).
24.
Tables Internationales de Constantes Sélectionnées
,
Données Spectroscopiques Relatives aux Molécules Diatomiques
, Vol.
17
,
B.
Masson
, ed. (
Pergamon
,
New York
,
1970
).
You do not currently have access to this content.