An experimental investigation was conducted to examine the effects of variations in the temperature and volume fraction on the steady-state effective thermal conductivity of two different nanoparticle suspensions. Copper and aluminum oxide, CuO and Al2O3, nanoparticles with area weighted diameters of 29 and 36nm, respectively, were blended with distilled water at 2%, 4%, 6%, and 10% volume fractions and the resulting suspensions were evaluated at temperatures ranging from 27.5to34.7°C. The results indicate that the nanoparticle material, diameter, volume fraction, and bulk temperature, all have a significant impact on the effective thermal conductivity of these suspensions. The 6% volume fraction of CuO nanoparticle/distilled water suspension resulted in an increase in the effective thermal conductivity of 1.52 times that of pure distilled water and the 10% Al2O3 nanoparticle/distilled water suspension increased the effective thermal conductivity by a factor of 1.3, at a temperature of 34°C. A two-factor linear regression analysis based on the temperature and volume fraction was applied and indicated that the experimental results are in stark contrast to the trends predicted by the traditional theoretical models with respect to both temperature and volume fraction. The available models are reviewed and the possible reasons for the unusually high effective thermal conductivity of nanofluids are analyzed and discussed.

1.
R. E.
Meredith
and
C. W.
Tobias
,
J. Electrochem. Soc.
108
,
286
(
1961
).
2.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
3rd ed. (
Oxford University
,
New York
,
1892
), Vol.
I
, p.
435
.
3.
R. L.
Hamilton
and
O. K.
Crosser
,
Ind. Eng. Chem. Fundam.
1
,
187
(
1962
).
4.
Y.
Nagasaka
and
A.
Nagashima
,
J. Phys. E
4
,
1435
(
1981
).
5.
S. U. S.
Choi
, in
Developments and Applications of Non-Newtwonian Flows
, edited by
D. A.
Siginer
and
H. P.
Wang
(
ASME
,
New York
,
1995
).
6.
J. A.
Eastman
,
U. S.
Choi
,
S.
Li
,
L. J.
Thompson
, and
S.
Lee
,
Enhanced thermal conductivity through the development of nanofluids
, in
Nanophase and Nanocomposite Materials II
, edited by
S.
Komarneni
,
J. C.
Parker
, and
H. J.
Wollenberger
, (Mater Res. Soc. Symp. Proc.
457
, Warrendale, PA,
1997
, pp.
9
10
.
7.
S.
Lee
,
S. U. S.
Choi
,
S.
Li
, and
J. A.
Eastman
,
J. Heat Transfer
121
,
280
(
1999
).
8.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
9.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
(
2000
).
10.
H.
Xie
,
J.
Wang
,
T.
Xi
,
Y.
Liu
, and
F.
Ai
,
J. Mater. Sci. Lett.
21
,
1469
(
2002
).
11.
H.
Xie
,
J.
Wang
,
T.
Xi
,
Y.
Liu
, and
F.
Ai
,
J. Appl. Phys.
91
,
4568
(
2002
).
12.
X.
Wang
and
X.
Xu
,
J. Thermophys. Heat Transfer
13
,
474
(
1999
).
13.
S. K.
Das
,
N.
Putra
,
P.
Thiesen
, and
W.
Roetzel
,
J. Heat Transfer
125
,
567
(
2003
).
14.
H. E.
Patel
,
S. K.
Das
, and
T.
Sundararajan
,
Appl. Phys. Lett.
83
,
2931
(
2003
).
15.
J.
Vadasz
,
S.
Govender
, and
P.
Vadasz
,
Int. J. Heat Mass Transfer
48
,
2673
(
2005
).
16.
G. P.
Peterson
and
L. S.
Fletcher
,
J. Thermophys. Heat Transfer
1
,
343
(
1987
).
17.
G. P.
Peterson
and
L. S.
Fletcher
,
J. Heat Transfer
110
,
38
(
1988
).
18.
G. P.
Peterson
and
L. S.
Fletcher
,
J. Heat Transfer
111
,
824
(
1989
).
19.
B.
Kim
and
G. P.
Peterson
,
J. Thermophys. Heat Transfer
(in press).
20.
C. L.
Yaws
,
Chemical Property Handbook, Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organica and Inorganic Chenicals
, 1st ed. (
McGraw-Hill
,
New York
,
1999
), p.
1311
.
21.
R.
Berman
,
Thermal Conductivity in Solids
, 1st ed. (
Clarendon
,
Oxford
,
1976
), p.
61
.
22.
P. G.
Klemens
, in
Thermal Conductivity
, edited by
P.
Gaal
(
Destech
,
Lancaster
,
2005
), Vol.
28
, pp.
304
317
.
23.
R. H.
Davis
,
Int. J. Thermophys.
7
,
609
(
1986
).
24.
P. G.
Klemens
,
High Temp. - High Press.
23
,
241
(
1991
).
25.
P. G.
Klemens
,
J. Appl. Phys.
70
,
4322
(
1991
).
26.
D. P. H.
Hasselman
and
L. F.
Johnson
,
J. Compos. Mater.
21
,
508
(
1987
).
27.
G.
Chen
,
J. Heat Transfer
118
,
539
(
1996
).
28.
S. P.
Jang
and
S. U. S.
Choi
,
Appl. Phys. Lett.
84
,
4316
(
2004
).
29.
R.
Prasher
,
P.
Bhattacharya
, and
P. E.
Phelan
,
Phys. Rev. Lett.
94
,
025901
(
2005
).
30.
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
31.
B. X.
Wang
,
H.
Li
,
X. F.
Peng
, and
G. P.
Peterson
, in
Proceedings of the Second International Symposium on Two-Phase Flow Modeling and Experimentation
, edited by
G. P.
Celata
,
P.
Di Marco
A.
Mariani
, and
R. K.
Shah
(
Edizioni ETS
,
Pisa
,
2004
), Vol.
1
, pp.
1433
1450
.
32.
J.
Wu
,
N. P.
Padture
,
P. G.
Klemens
, and
M.
Gell
,
J. Mater. Res.
17
,
3193
(
2002
).
33.
G. P.
Peterson
and
C. H.
Li
, in
Advances in Heat Transfer
, edited by
J. P.
Hartnett
and
T. F.
Irvine
(
Pergamon
,
New York
,
2005
), Vol.
39
, pp.
261
392
.
34.
C. H.
Li
and
G. P.
Peterson
, in
Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando
, 5–11 November
2005
.
You do not currently have access to this content.