We describe an optical beam deflection technique for measurements of the thermal diffusivity of fluid mixtures and suspensions of nanoparticles with a precision of better than 1%. Our approach is tested using the thermal conductivity of ethanol-water mixtures; in nearly pure ethanol, the increase in thermal conductivity with water concentration is a factor of 2 larger than predicted by effective medium theory. Solutions of C60C70 fullerenes in toluene and suspensions of alkanethiolate-protected Au nanoparticles were measured to maximum volume fractions of 0.6% and 0.35vol%, respectively. We do not observe anomalous enhancements of the thermal conductivity that have been reported in previous studies of nanofluids; the largest increase in thermal conductivity we have observed is 1.3%±0.8% for 4nm diam Au particles suspended in ethanol.

1.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
2.
P.
Keblinski
,
J. A.
Eastman
, and
D. G.
Cahill
,
Mater. Today
8
,
36
(
2005
).
3.
S. K.
Das
,
N.
Putra
,
P.
Thiesen
, and
W.
Roetzel
,
ASME J. Heat Transfer
125
,
567
(
2003
).
4.
I. C.
Bang
and
S. H.
Chang
,
Int. J. Heat Mass Transfer
48
,
2407
(
2005
).
5.
S. M.
You
and
J. H.
Kim
,
Appl. Phys. Lett.
83
,
3374
(
2003
).
6.
S. K.
Das
,
N.
Putra
, and
W.
Roetzel
,
Int. J. Heat Mass Transfer
46
,
851
(
2003
).
7.
P.
Vassallo
,
R.
Kumar
, and
S.
D’Amico
,
Int. J. Heat Mass Transfer
47
,
407
(
2004
).
8.
Y.
Xuan
and
Q.
Li
,
ASME J. Heat Transfer
125
,
151
(
2003
).
9.
D.
Wen
and
Y.
Ding
,
Int. J. Heat Mass Transfer
47
,
5181
(
2004
).
10.
D. H.
Kumar
,
H. E.
Patel
,
V. R. R.
Kumar
,
T.
Sundararajan
,
T.
Pradeep
, and
S. K.
Das
,
Phys. Rev. Lett.
93
,
144301
(
2004
).
11.
X.
Wang
,
X.
Xu
, and
S. J. S.
Choi
,
J. Thermophys. Heat Transfer
13
,
474
(
1999
).
12.
S. U. S.
Choi
,
Z. G.
Zhang
,
W.
Yu
,
F. E.
Lockwood
, and
E. A.
Grulke
,
Appl. Phys. Lett.
79
,
2252
(
2001
).
13.
H.
Xie
,
H.
Lee
,
W.
Youn
, and
M.
Choi
,
J. Appl. Phys.
94
,
4967
(
2003
).
14.
D.
Wen
and
Y.
Ding
,
J. Thermophys. Heat Transfer
18
,
481
(
2004
).
15.
H. E.
Patel
,
S. K.
Das
,
T.
Sundararajan
,
A. S.
Nair
,
B.
George
, and
T.
Pradeep
,
Appl. Phys. Lett.
83
,
2931
(
2003
).
16.
T.-K.
Hong
,
H.-S.
Yang
, and
C.
Choi
,
J. Appl. Phys.
97
,
064311
(
2005
).
17.
H.
Xie
,
J.
Wang
,
T.
Xi
,
Y.
Liu
,
F.
Ai
, and
Q.
Wu
,
J. Appl. Phys.
91
,
4568
(
2002
).
18.
H.
Xie
,
J.
Wang
,
T.
Xi
,
Y.
Liu
, and
F.
Ai
,
J. Mater. Sci. Lett.
21
,
1469
(
2002
).
19.
H.
Xie
,
J.
Wang
,
J.
Xi
, and
Y.
Liu
,
Int. J. Thermophys.
23
,
571
(
2002
).
20.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
(
2000
).
21.
H.
Masuda
,
A.
Ebata
,
K.
Teramae
, and
N.
Hishinuma
,
Netsu Bussei
7
,
227
(
1993
).
22.
M. J.
Biercuk
,
M. C.
Liaguno
,
M.
Radosavljevic
,
J. K.
Hyun
,
A. T.
Johnson
, and
J. E.
Fischer
,
Appl. Phys. Lett.
80
,
2767
(
2004
).
23.
R.
Prasher
,
R.
Bhattacharya
, and
R. E.
Phelan
,
Phys. Rev. Lett.
94
,
025901
(
2005
).
24.
S. P.
Jang
and
S. U. S.
Choi
,
Appl. Phys. Lett.
84
,
4316
(
2004
).
25.
K.
Khanafer
,
K.
Vafai
, and
M.
Lightstone
,
Int. J. Heat Mass Transfer
46
,
3639
(
2003
).
26.
H.
Xie
,
M.
Fujii
, and
X.
Zhang
,
Int. J. Heat Mass Transfer
48
,
2926
(
2005
).
28.
Q.
Xue
and
W.
Xu
,
Mater. Chem. Phys.
90
,
298
(
2005
).
29.
L.
Gosselin
and
A. K.
da Silva
,
Appl. Phys. Lett.
85
,
4160
(
2004
).
30.
A. R. A.
Khaled
and
K.
Vafai
,
Int. J. Heat Mass Transfer
48
,
2172
(
2005
).
31.
Y.
Xuan
and
W.
Roetzel
,
Int. J. Heat Mass Transfer
43
,
3701
(
2000
).
32.
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
33.
C. K.
Yee
,
R.
Jordan
,
A.
Ulman
,
H.
White
,
A.
King
,
M.
Rafailovich
, and
J.
Sokolov
,
Langmuir
15
,
3486
(
1999
).
34.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
,
J. Chem. Soc., Chem. Commun.
1994
,
801
.
35.
R. G.
Terrill
,
J. Am. Chem. Soc.
117
,
12537
(
1995
).
36.
M. J.
Hostetler
 et al.,
Langmuir
14
,
17
(
1998
).
37.
S. A.
Putnam
and
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
2368
(
2004
).
38.

The thermal conductivity (Λ13.4mWcm1K1), thermo-optic coefficient (dndT8.5×106K1), and effective beam waist of the laser (ω07.5μm) were determined in independent experiments with the fused silica (FS) heater substrate in air. In this analysis, we used a heat capacity of Cp1.64Jcm3K1. The metal-line heater dimensions (separation—2a=50μm and width—2b=6μm) were verified with an optical microscope.

39.
G. C.
Benson
and
P. J.
D’Arcy
,
J. Chem. Eng. Data
27
,
439
(
1982
).
40.
R.
Kita
,
S.
Wiegand
, and
J.
Luettmer-Strathamann
,
J. Chem. Phys.
121
,
3874
(
2004
).
41.
Q. F.
Lei
,
R. S.
Lin
, and
D. Y.
Ni
,
J. Chem. Eng. Data
42
,
971
(
1997
).
42.
S. A.
Putnam
and
D. G.
Cahill
,
Langmuir
21
,
5317
(
2005
).
43.
D. N.
Nikogosyan
,
Properties of Optical and Laser-Related Materials: A Handbook
(
Wiley
,
Chichester
,
1997
).
44.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
45.
P.
Mulvaney
,
Langmuir
12
,
788
(
1996
).
46.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
47.
S. K.
Ghosh
,
S.
Nath
,
S.
Kundu
,
K.
Esumi
, and
T.
Pal
,
J. Phys. Chem. B
108
,
13963
(
2004
).
48.
L. B.
Scaffardi
,
N.
Pellegri
,
L.
de Sanctis
, and
J. L.
Tocho
,
Nanotechnology
16
,
158
(
2005
).
49.
D. A. G.
Bruggeman
,
Ann. Phys.
24
,
636
(
1935
).
50.
R.
Landauer
,
Inst. Phys. Conf. Ser.
40
,
15
(
1978
).
You do not currently have access to this content.