Key aspects of the growth process of epitaxial SrTiO3 with crystalline interface on silicon are outlined. An important step in this process is the solid phase epitaxy in ultrahigh vacuum of amorphous SrTiO3 on top of a few monolayer thick, low-temperature grown, epitaxial (Ba,Sr)OSi(100) template. Insufficient oxygen supply during the SrTiO3 deposition step causes the formation of amorphous alkaline-earth silicates and TiSix at the Si∕epitaxial oxide interface during ultrahigh vacuum annealing. Performing SrTiO3 deposition in excess O2, this interfacial reaction is suppressed, and a metal-insulator-semiconductor capacitance equivalent to 0.5nm of SiO2 is obtained for a 10unit cell SrTiO31unit cell (Ba,Sr)OpSi(100) stack.

1.
D.
Lammers
, EE Times, 2 July
2001
(http://www.eetimes.com/news/latest/technology/showArticle.jhtml?articleID=10808904);
P.
Clarke
, EE Times, 14 April
2005
(http://www.eetimes.com/news/latest/technology/showArticle.jhtml?articleID=160900376).
2.
ITRS roadmap
, 2004 ed. (www.public.itrs.net).
3.
C. R.
Ashman
,
C. J.
Foerst
,
K.
Schwarz
, and
P. E.
Bloechl
,
Phys. Rev. B
69
,
075309
(
2004
).
4.
S. A.
Chambers
,
Y.
Liang
,
Z.
Yu
,
R.
Droopad
, and
J.
Ramdani
,
J. Vac. Sci. Technol. A
19
,
934
(
2001
).
5.
C. J.
Foerst
,
C. R.
Ashman
,
K.
Schwarz
, and
P. E.
Bloechl
,
Nature (London)
427
,
53
(
2004
).
6.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
7.
R.
Droopad
 et al,
J. Cryst. Growth
227–228
,
936
(
2001
).
8.
K.
Eisenbeiser
 et al,
Appl. Phys. Lett.
76
,
1324
(
2000
).
9.
S.
Jeon
,
F. J.
Walker
,
C. A.
Billman
,
R. A.
McKee
, and
H.
Hwang
,
IEEE Electron Device Lett.
24
,
218
(
2003
).
10.
G. J.
Norga
 et al,
Mater. Res. Soc. Symp. Proc.
786
,
219
(
2004
).
11.
J. Q.
He
,
C. L.
Jia
,
V.
Vaithyanathan
,
D. G.
Schlom
,
J.
Schubert
,
A.
Gerber
,
H. H.
Kohlstedt
, and
R. H.
Wang
,
J. Appl. Phys.
97
,
104921
(
2005
).
12.
J. H.
Hao
,
J.
Gao
,
Z.
Wang
, and
D. P.
Yu
,
Appl. Phys. Lett.
87
,
131908
(
2005
).
13.
G. J.
Norga
 et al,
Appl. Phys. Lett.
87
,
262905
(
2005
).
14.
H.
Li
 et al,
J. Appl. Phys.
93
,
4521
(
2003
).
15.
Ch.
Marchiori
, Ph.D. thesis, Department of Materials Science,
Università degli Studi di Milano—Bicocca
,
2005
.
16.
Y.
Liang
,
S.
Gan
, and
M.
Engelhard
,
Appl. Phys. Lett.
79
,
3591
(
2001
).
17.
R.
Larciprete
,
M.
Danailov
,
A.
Barinov
,
L.
Gregoratti
, and
M.
Kiskinova
,
J. Appl. Phys.
90
,
4361
(
2001
).
18.
K.
Holloway
and
R.
Sinclair
,
J. Appl. Phys.
61
,
1359
(
1987
).
19.
S.
Stemmer
, J. Vac. Sci. Technol. B
B
,
22
791
(
2004
).
20.
C. M.
Perkins
,
B. B.
Triplett
,
P. C.
McIntyre
,
K. C.
Saraswat
, and
E.
Shero
,
Appl. Phys. Lett.
81
,
1417
(
2002
).
21.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
22.
M. A.
Gribelyuk
,
A.
Callegari
,
E. P.
Gusev
,
M.
Copel
, and
D. A.
Buchanan
,
J. Appl. Phys.
92
,
1232
(
2002
).
23.
D. E.
Kotecki
,
IBM J. Res. Dev.
43
,
367
(
1999
).
24.
J. R.
Hauser
and
K.
Ahmed
,
AIP Conf. Proc.
449
,
235
(
1998
).
25.
T. R.
Taylor
,
P. J.
Hansen
,
N.
Pervez
,
B.
Acikel
,
R. A.
York
, and
J. S.
Speck
,
J. Appl. Phys.
94
,
3390
(
2003
).
You do not currently have access to this content.