A series of [FePt]100xCrx nanoparticles (x=5, 10, and 16at.%) was chemically synthesized by two different techniques. In one method, the simultaneous chemical reduction of FeCl24H2O, Pt-acetylacetonate, and Cr-acetylacetonate was used with 2, 4 hexadecanediol as the reducing agent and phenyl ether as the solvent. The as-prepared particles had a mean size of 1.5nm. In the second method, the simultaneous chemical reduction of Pt-acetylacetonate and Cr-acetylacetonate and the thermal reduction of Fe(CO)5 were used with adamantanecarboxylic acid as the reducing agent and hexadecylamine as the solvent. These as-prepared particles were 3.5nm in size. X-ray diffraction confirmed that the Cr formed a solid solution within the A1 FePt phase for both processes. Upon annealing, the Cr hindered sintered grain growth of FePt nanoparticle arrays. Consequently, we were able to use Cr as a means to tune the ordering temperature as a function of the size effect in FePt nanoparticles. The presence of Cr in the ordered FePt reduced the magnetic coercivity of the transformed nanoparticles.

1.
S.
Sun
,
C. B.
Murray
,
D.
Weller
,
L.
Folks
, and
A.
Moser
,
Science
287
,
1989
(
2000
).
2.
S.
Sun
,
E. E.
Fullerton
,
D.
Weller
, and
C. B.
Murray
,
IEEE Trans. Magn.
37
,
1239
(
2001
).
3.
D.
Weller
and
A.
Moser
,
IEEE Trans. Magn.
35
,
4423
(
1999
).
4.
R. F. C.
Farrow
,
D.
Weller
,
R. F.
Marks
,
M. F.
Toney
,
A.
Cebollada
, and
G. R.
Harp
,
J. Appl. Phys.
79
,
5967
(
1996
).
5.
J. W.
Harrell
,
D. E.
Nikles
,
S. S.
Kang
,
X. C.
Sun
, and
Z.
Jia
,
J. Magn. Soc. Jpn.
28
,
847
(
2004
).
6.
S. S.
Kang
,
Z.
Jia
,
D. E.
Nikles
, and
J. W.
Harrell
,
IEEE Trans. Magn.
39
,
2753
(
2003
).
7.
S. S.
Kang
,
D. E.
Nikles
, and
J. W.
Harrell
,
J. Appl. Phys.
93
,
7178
(
2003
).
8.
X. C.
Sun
,
S. S.
Kang
,
J. W.
Harrell
,
D. E.
Nikles
,
Z. R.
Dai
,
J.
Li
, and
Z. L.
Wang
,
J. Appl. Phys.
93
,
7337
(
2003
).
9.
M.
Tanase
,
N. T.
Nuhfer
,
D. E.
Laughlin
,
T. J.
Klemmer
,
C.
Liu
,
N.
Shukla
,
X.
Wu
, and
D.
Weller
,
J. Magn. Magn. Mater.
266
,
215
(
2003
).
10.
Z. R.
Dai
,
S.
Sun
, and
Z. L.
Wang
,
Nano Lett.
1
,
443
(
2001
).
11.
T.
Maeda
,
T.
Kai
,
A.
Kikitsu
,
T.
Nagase
, and
J.
Akiyama
,
Appl. Phys. Lett.
80
,
2147
(
2002
).
12.
C. L.
Platt
,
K. W.
Wierman
,
E. B.
Svedberg
,
R.
van de Veerdonk
,
J. K.
Howard
,
A. G.
Roy
, and
D. E.
Laughlin
,
J. Appl. Phys.
92
,
6104
(
2002
).
13.
J. P.
Chu
,
T.
Mhalingam
, and
S. F.
Wang
,
J. Phys.: Condens. Matter
16
,
561
(
2004
).
14.
P. C.
Kuo
,
Y. D.
Yao
,
C. M.
Kuo
, and
H. C.
Wu
,
J. Appl. Phys.
87
,
6146
(
2000
).
15.
S. R.
Lee
,
S.
Yang
,
Y. K.
Kim
, and
J. G.
Na
,
Appl. Phys. Lett.
78
,
4001
(
2001
).
16.
Y. K.
Takahashi
,
T.
Ohkubo
,
M.
Ohnuma
, and
K.
Hono
,
J. Appl. Phys.
93
,
7166
(
2003
).
17.
Y. K.
Takahashi
,
T.
Koyama
,
M.
Ohnuma
,
T.
Ohkubo
, and
K.
Hono
,
J. Appl. Phys.
95
,
2690
(
2004
).
18.
B. D.
Cullity
,
Elements of X-Ray Diffraction
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1978
), p.
102
.
19.
S.
Kang
,
Z.
Jia
,
S.
Shi
,
D. E.
Nikles
, and
J. W.
Harrell
,
Appl. Phys. Lett.
86
,
062503
(
2005
).
20.
P. J.
Flanders
and
M. P.
Sharrock
,
J. Appl. Phys.
62
,
2981
(
1987
).
You do not currently have access to this content.