The stress evolution during electrodeposition of NiMn from a sulfamate-based bath was investigated as a function of Mn concentration and current density. The NiMn stress evolution with film thickness exhibited an initial high transitional stress region followed by a region of steady-state stress with a magnitude that depended on deposition rate, similar to the previously reported stress evolution in electrodeposited Ni [S. J. Hearne and J. A. Floro, J. Appl. Phys.97, 0149011 (2005)]. The incorporation of increasing amounts of Mn resulted in a linear increase in the steady-state stress at constant current density. However, no significant changes in the texture or grain size were observed, which indicates that an atomistic process is driving the changes in steady-state stress. Additionally, microstrain measured by ex situ x-ray diffraction increased with increasing Mn content, which was likely the result of localized lattice distortions associated with substitutional incorporation of Mn and∕or increased twin density.

1.
E. J.
Mills
,
J. Proc. R. Soc. N. S. W.
26
,
504
(
1877
).
2.
G. G.
Stoney
,
Proc. R. Soc. London
A82
,
172
(
1909
).
3.
J. W.
Dini
,
Electrodeposition: The Materials Science of Coating and Substrates
(
Noyes
,
Norwich
,
1993
), p.
126
.
4.
S. J.
Hearne
and
J. A.
Floro
,
J. Appl. Phys.
97
,
014901
(
2005
).
5.
S. H.
Goods
,
J. J.
Kelly
, and
N. Y. C.
Yang
,
Microsyst. Technol.
10
,
498
(
2004
).
6.
J. J.
Kelly
,
S. H.
Goods
, and
N. Y. C.
Yang
,
Electrochem. Solid-State Lett.
6
,
C88
(
2003
).
7.
S.
Graham
,
J.
Kelly
,
N.
Yang
, and
T.
Borca-Tasciuc
,
Microsyst. Technol.
10
,
510
(
2004
).
8.
J. A.
Floro
and
E.
Chason
, in
In Situ Real-Time Characterization of Thin Films
, edited by
Orlando
Auciello
and
Alan R.
Krauss
(
Wiley
,
New York
,
2001
), pp.
191
216
.
9.
G. K.
Williamson
and
W. H.
Hall
,
Acta Metall.
1
,
22
(
1953
).
10.
O. E.
Kongstein
,
U.
Bertocci
, and
G. R.
Stafford
,
J. Electrochem. Soc.
152
,
C116
(
2005
).
11.
S.
Foiles
(unpublished).
12.
N. Y. C.
Yang
,
T. Y.
Headley
,
J. J.
Kelly
, and
J. M.
Hruby
,
Scr. Mater.
51
,
761
(
2004
).
13.
B. W.
Sheldon
,
K. H. A.
Lua
, and
A.
Rajamani
,
J. Appl. Phys.
90
,
5097
(
2001
).
14.
W. D.
Nix
and
B. M.
Clemens
,
J. Mater. Res.
14
,
3467
(
1999
).
15.
R. W.
Hoffman
,
Thin Solid Films
34
,
185
(
1976
).
16.
S. J.
Hearne
,
S. C.
Seel
,
J. A.
Floro
,
C. W.
Dyck
,
W.
Fan
, and
S. R. J.
Brueck
,
J. Appl. Phys.
97
,
083530
(
2005
).
17.
A.
Rajamani
,
R.
Beresford
, and
B. W.
Sheldon
,
Appl. Phys. Lett.
79
,
3776
(
2001
).
18.
S. C.
Seel
,
C. V.
Thompson
,
S. J.
Hearne
, and
J. A.
Floro
,
J. Appl. Phys.
88
,
7079
(
2000
).
19.
J. P.
Hurth
and
J.
Lothe
,
Theory of Dislocations
, 2nd ed. (
Wiley
,
New York
,
1975
).
20.
M. D.
Thouless
,
Acta Metall. Mater.
41
,
1057
(
1993
).
21.
E.
Chason
,
B. W.
Sheldon
,
L. B.
Freund
,
J. A.
Floro
, and
S. J.
Hearne
,
Phys. Rev. Lett.
88
,
156103
(
2002
).
22.
J. M.
Dona
and
J.
Gonzalez-Velasco
,
Surf. Sci.
274
,
205
(
1992
).
You do not currently have access to this content.