A series of plate-impact spall experiments was conducted to study the spall strength of seven microstructural conditions of aluminum, including three grain sizes of 6061 Al alloy, both ultrapure and commercially pure (1060) polycrystalline aluminum, and single-crystal Al with two different orientations, over the stress range of 4–22 GPa. The pullback velocity, which is a characteristic signature of spall strength, is observed to depend on initial microstructure, impact stress, pulse duration, and loading rate. The pullback velocity generally increases over the stress range of 4–14 GPa and achieves a maximum as the impact stress approaches 22 GPa. The pullback velocity of [100] single-crystal Al is higher than that for both polycrystalline samples and [111] single-crystal samples, indicating that grain orientation strongly affects material response. Experimental results also show that the spall behavior is strongly dependent on sample thickness, while the effect of shock pulse duration was observed to be less significant. Comparison among three 6061 materials indicates that the observed differences depend on initial yield strength. The results also show that initial microstructures and impurities have a diminishing effect on the pullback velocity at stresses near 22 GPa. However, initial properties are observed to have a pronounced effect on the detailed structure of the pullback velocity profile at all stress levels. In particular, an interesting feature, i.e., a sharp slope during pullback followed by a distinct transition to a slower slope, is consistently observed. The occurrence of this change in slope is observed to depend on impact stress, loading rate, and grain size.

1.
G. E.
Duvall
and
G. R.
Fowles
,
Shock Waves, in High Pressure Physics and Chemistry
, edited by
R. S.
Bradley
(
Academic
, New York,
1963
), p.
229
.
2.
G. R.
Fowles
,
G. E.
Duvall
,
J.
Asay
,
P.
Bellamy
,
F.
Feistmann
,
D.
Grady
,
T.
Michaels
, and
R.
Mitchell
,
Rev. Sci. Instrum.
41
,
984
(
1970
).
3.
V. E.
Fortov
,
V. P.
Efremov
,
G.
Kanel
,
P.
Morozov
,
B.
Demidov
,
I.
Lomonosov
,
A.
Ni
, and
O. Yu.
Vorobiev
, in
Shock Compression of Condensed Matter 1991
, edited by
S. C.
Schmidt
,
R. D.
Dick
,
J. W.
Forbes
, and
D. G.
Tasker
, (
Elsevier Science
, New York,
1992
), p.
833
.
4.
I.
Gilath
,
S.
Eliezer
,
M. P.
Dariel
, and
L.
Kornblit
,
J. Mater. Sci. Lett.
7
,
915
(
1988
).
5.
V. E.
Fortov
,
V. V.
Kostin
, and
S.
Eliezer
,
J. Appl. Phys.
70
,
4524
(
1991
).
6.
C. A.
Hall
 et al,
Rev. Sci. Instrum.
72
,
3587
(
2001
).
7.
D. R.
Curran
,
L.
Seaman
, and
D. A.
Shockey
,
Phys. Rep.
147
,
253
(
1987
).
8.
T.
Anoun
,
L.
Seamen
,
D. R.
Curran
,
G. I.
Kanel
,
S. V.
Razorenov
, and
A. K.
Utkin
,
Spall Fracture
(
Springer
, New York,
2003
).
9.
J. S.
Rinehart
and
J.
Pearson
,
Behavior of Metals Under Impulsive Loads
(
The American Society for Metals
, Cleveland, Ohio,
1954
).
10.
D. E.
Grady
,
J. Mech. Phys. Solids
,
36
,
353
(
1988
).
11.
D. E.
Grady
and
M. E.
Kipp
, in
High-Pressure Shock Compression of Solids
, edited by
J. R.
Asay
and
M.
Shahinpoor
(
Springer
, New York,
1993
), pp.
265
321
.
12.
L. W.
Davison
and
R. A.
Graham
,
Phys. Rep.
55
,
256
(
1979
).
13.
M. A.
Meyers
and
C. T.
Aimone
,
Prog. Mater. Sci.
29
,
1
(
1983
).
14.
V. I.
Romanchenko
and
G. V.
Stepanov
,
J. Appl. Mech. Tech. Phys.
21
,
141
(
1980
).
15.
G. I.
Kanel
,
S. V.
Razorenov
, and
V. E.
Fortov
,
J. Appl. Mech. Tech. Phys.
25
,
707
(
1984
).
16.
S. A.
Novikov
,
I. I.
Divnov
, and
A. G.
Ivanov
,
Phys. Met. Metallogr.
,
21
,
608
(
1966
).
17.
S.
Hanim
and
J. R.
Klepaczko
,
Int. J. Impact Eng.
22
,
649
(
1999
).
18.
D. A.
Shockey
,
L.
Seaman
, and
D. R.
Curran
, in
Metallurgical Effects at High Strain Rates
, edited by
R. W.
Rohde
,
B. M.
Butcher
,
J. R.
Holland
, and
C. H.
Karnes
(
Plenum
, New York,
1973
), p.
473
.
19.
L.
Seaman
,
D. R.
Curran
, and
D. A.
Shockey
,
J. Appl. Phys.
47
,
4814
(
1976
).
20.
W. B.
Jones
and
H. I.
Dawson
, in
Metallurgical Effects at High Strain Rates
, edited by
R. W.
Rohde
,
B. M.
Butcher
,
J. R.
Holland
, and
C. H.
Karnes
(
Plenum
, New York,
1973
), p.
443
.
21.
D. R.
Christman
,
W. M.
Isbell
,
S. G.
Babcock
,
A. R.
McMillan
, and
S. J.
Green
, DASA Report No. 2501-3, AD735966,
1971
(unpublished).
22.
S.
Cochran
and
D.
Banner
,
J. Appl. Phys.
48
,
2729
(
1977
).
23.
A. L.
Stevens
and
F. R.
Tuler
,
J. Appl. Phys.
42
,
5665
(
1971
).
24.
D. R.
Ek
and
J. R.
Asay
,
Shock Waves in Condensed Matter 1985
, edited by
Y. M.
Gupta
(
Plenum
, New York,
1986
), p.
413
.
25.
Y. I.
Mescheryakov
,
A. K.
Divakov
, and
N. I.
Zhigacheva
,
Int. J. Solids Struct.
41
,
2349
(
2004
).
26.
G. T.
Gray
 III
and
J. C.
Huang
,
Mater. Sci. Eng., A
145
,
21
(
1991
).
27.
G. T.
Gray
 III
,
Acta Metall.
36
,
1745
(
1988
).
28.
B. M.
Butcher
,
J. Appl. Mech.
34
,
209
(
1967
).
29.
A. D.
Schwartz
,
J. U.
Cazamias
,
P. S.
Fiske
, and
R. W.
Minich
,
Shock Compression of Condensed Matter 2001
, edited by
M. D.
Furnish
,
N. N.
Thadhani
, and
Y.
Horie
,
AIP Conf. Proc.
No.
620
(
AIP
, New York,
2002
), p.
491
.
30.
R. W.
Minich
,
J. U.
Cazamias
,
M.
Kumar
, and
A. J.
Schwartz
,
Metall. Mater. Trans. A
35
,
2663
(
2004
).
31.
A. K.
Zurek
,
Shock Compression of Condensed Matter 1989
, edited by
S. C.
Schmidt
,
J. N.
Johnson
, and
L. W.
Davidson
(
North-Holland
, Amsterdam,
1990
), p.
433
.
32.
A. K.
Zurek
,
P. S.
Follansbee
, and
J.
Hack
,
Metall. Trans. A
21A
,
431
(
1990
).
33.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
34.
H.
Huang
and
J. R.
Asay
,
J. Appl. Phys.
98
,
033524
(
2005
).
35.
J. R.
Asay
,
L. P.
Mix
, and
F. C.
Perry
,
Appl. Phys. Lett.
29
,
284
(
1976
).
36.
V.
Randle
, in
Electron Backscatter Diffraction in Materials Science
, edited by
A. J.
Schwartz
,
M.
Kumar
, and
B. L.
Adams
(
Kluwer Academic
, Dordrecht,
2000
).
37.
E.
Devlin
(private communication).
38.
H. J.
Kleebee
(private communication).
39.
J. W.
Swegle
and
D. E.
Grady
,
J. Appl. Phys.
58
,
692
(
1985
).
40.
J. N.
Johnson
,
R. S.
Hixson
,
D. L.
Tonks
, and
A. K.
Zurek
,
AIP Conf. Proc.
370
,
523
(
1996
).
41.
F. R.
Tuler
and
B. M.
Butcher
,
Int. J. Fract. Mech.
4
,
431
(
1968
).
42.
P. D.
Church
,
W. G.
Proud
,
T. D.
Andrews
, and
B.
Goldthorpe
,
Shock Compression of Condensed Matter 2001
, edited by
M. D.
Furnish
,
N. N.
Thadhani
, and
Y.
Horie
,
AIP Conf. Proc.
No.
620
(
AIP
, New York,
2002
), p.
487
.
43.
R. S.
Hixson
,
J. N.
Johnson
,
G. T.
Gray
 III
, and
J. D.
Price
,
AIP Conf. Proc.
370
,
555
(
1996
).
44.
G. T.
Gray
 III
,
N. K.
Bourne
,
M. A.
Zocher
,
P. J.
Maudlin
, and
J. C.F.
Millett
,
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
L. C.
Chhabildas
, and
R. S.
Hixson
,
AIP Conf. Proc.
No.
505
(
American Institute of Physics
, Melville, NY,
2000
), p.
509
.
45.
H.
Nahme
,
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
L. C.
Chhabildas
, and
R. S.
Hixson
,
AIP Conf. Proc.
No.
505
(
American Institute of Physics
, Melville, NY,
2000
), p.
517
.
46.
F.
Llorca
and
G.
Roy
,
Shock Compression of Condensed Matter 2003
, edited by
M. D.
Furnish
,
Y. M.
Gupta
, and
J. W.
Forbes
,
AIP Conf. Proc.
No.
706
(
American Institute of Physics
, Melville, New York,
2004
), p.
589
.
47.
L. C.
Chhabildas
and
J. R.
Asay
, in
Shock-Wave and High-Strain-Rate Phenomena in Materials
, edited by
M. A.
Meyers
,
L. E.
Murr
, and
K. P.
Staudhammer
(
Marcel Dekker
, New York,
1992
), p.
947
.
48.
V. A.
Ogorodnivov
,
A. G.
Ivanov
, and
E. S.
Tyun’kin
 et al,
Fiz. Goreniya Vzryva
94
(
1992
).
49.
G. I.
Kanel
,
S. V.
Razorenov
,
A.
Bogatch
,
A. V.
Utkin
,
V. E.
Fortov
, and
D. E.
Grady
,
J. Appl. Phys.
79
,
8310
(
1996
).
50.
A. L.
Stevens
,
L.
Davison
, and
W. E.
Warren
,
Proceedings of the Conference on Dynamic Crack Propagation
(
Lehigh University
, Bethlehem,
1972
), p.
37
.
51.
A. L.
Stevens
,
L.
Davison
, and
W. E.
Warren
,
J. Appl. Phys.
43
,
4922
(
1972
).
52.
G. I.
Kanel
,
S. V.
Razorenov
,
K.
Baumung
, and
J.
Singer
,
J. Appl. Phys.
90
,
136
(
2001
).
53.
J.
Belak
(private communication).
54.
J. N.
Johnson
,
J. Appl. Phys.
52
,
2812
(
1981
).
55.
A. L.
Gurson
,
J. Eng. Mater. Technol.
99
,
2
(
1977
).
56.
A. M.
Rajendran
,
M. A.
Dietenberger
, and
D. J.
Grove
,
J. Appl. Phys.
65
,
1521
(
1989
).
You do not currently have access to this content.