A nonlinear anisotropic continuum framework for describing the thermoelastic-plastic response of single crystals shocked along arbitrary orientations has been developed. Our modeling approach incorporates nonlinear elasticity, crystal plasticity, and thermodynamic consistency within an incremental tensor formulation. Crystal plasticity was incorporated by considering dislocation motion along specified slip planes. The theoretical developments presented here are sufficiently general to also accommodate other types of inelastic deformation mechanisms. As representative applications of the theoretical developments, numerical simulations of shock wave propagation in lithium fluoride (LiF) and copper single crystals are presented and compared to wave profile data for several crystal orientations. Simulations of shock wave propagation along low-symmetry directions, where data are not available, are also presented to examine the propagation of quasilongitudinal and quasishear waves in crystals undergoing elastic-plastic deformation. Temperature calculations for the shocked single crystals are discussed.

1.
J. M.
Winey
and
Y. M.
Gupta
,
J. Appl. Phys.
96
,
1993
(
2004
).
2.
J. N.
Johnson
,
O. E.
Jones
, and
T. E.
Michaels
,
J. Appl. Phys.
41
,
2330
(
1970
).
3.
J. N.
Johnson
,
J. Appl. Phys.
43
,
2074
(
1972
).
4.
J. N.
Johnson
,
J. Mech. Phys. Solids
20
,
367
(
1972
).
5.
D.
Peirce
,
R. J.
Asaro
, and
A.
Needleman
,
Acta Metall.
30
,
1087
(
1982
).
6.
M. E.
Gurtin
,
J. Mech. Phys. Solids
48
,
989
(
2000
).
7.
R. A.
Regueiro
,
D. J.
Bammann
,
E. B.
Marin
, and
K.
Garikipati
,
J. Eng. Mater. Technol.
124
,
380
(
2002
).
8.
L.
Anand
,
Comput. Methods Appl. Mech. Eng.
193
,
5359
(
2004
).
9.
K. J.
Bathe
,
Finite Element Procedures
(
Prentice Hall
, Englewood Cliffs, NJ,
1996
).
10.
R. N.
Thurston
, in
Physical Acoustics: Principles and Methods
, edited by
W. P.
Mason
(
Academic
, New York,
1964
), Vol.
I
, Pt. A, p.
1
.
11.
D. C.
Wallace
,
Phys. Rev. B
22
,
1477
(
1980
).
12.
D. C.
Wallace
, in
Solid State Physics
, edited by
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
(
Academic
, New York,
1970
), Vol.
25
, p.
301
.
13.
J. J.
Gilman
,
Micromechanics of Flow in Solids
(
McGraw-Hill
, New York,
1969
).
14.
Y. M.
Gupta
,
G. E.
Duvall
, and
G. R.
Fowles
,
J. Appl. Phys.
46
,
532
(
1975
).
15.
Y. M.
Gupta
, COPS wave propagation code, SRI International, Menlo Park, CA,
1976
.
16.
Y. M.
Gupta
,
Polym. Eng. Sci.
24
,
851
(
1984
).
17.
M. L.
Wilkins
, in
Methods in Computational Physics
, edited by
B.
Alder
,
S.
Fernbach
, and
M.
Rotenberg
(
Academic
, New York,
1964
), Vol.
3
, p.
211
.
18.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Duvall
,
M. H.
Miles
, and
R. F.
Tinder
,
J. Appl. Phys.
43
,
2132
(
1972
).
19.
J. R.
Drabble
and
R. E.B.
Strathen
,
Proc. Phys. Soc.
92
,
1090
(
1967
).
20.
NIST-JANAF Thermochemical Tables
, edited by
M. W.
Chase
, Jr.
(
American Institute of Physics
, New York,
1998
).
21.
D. C.
Wallace
,
Thermodynamics of Crystals
(
Wiley
, New York,
1972
).
22.
American Institute of Physics Handbook
, edited by
D. E.
Gray
(
McGraw-Hill
, New York,
1972
).
23.
J. J.
Gilman
and
W. G.
Johnston
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
(
Academic Press
, New York,
1962
), Vol.
13
, p.
147
.
24.
J. R.
Asay
, Ph.D. dissertation,
Washington State University
,
1971
.
25.
J. N.
Johnson
,
J. Appl. Phys.
42
,
5522
(
1971
).
26.
Y. M.
Gupta
,
J. Appl. Phys.
48
,
5067
(
1977
).
27.
O. E.
Jones
and
J. D.
Mote
,
J. Appl. Phys.
40
,
4920
(
1969
).
28.
W. C.
Overton
, Jr.
and
J.
Gaffney
,
Phys. Rev.
98
,
969
(
1955
).
29.
W. B.
Gauster
and
M. A.
Breazeale
,
Phys. Rev.
168
,
655
(
1968
).
30.
M. A.
Meyers
 et al,
Acta Mater.
51
,
1211
(
2003
).
You do not currently have access to this content.