HfO2 films have been grown with two atomic layer deposition (ALD) chemistries: (a) tetrakis(ethylmethylamino)hafnium (TEMAHf)+O3 and (b) HfCl4+H2O. The resulting films were studied as a function of ALD cycle number on Si(100) surfaces prepared with chemical oxide, HF last, and NH3 annealing. TEMAHf+O3 growth is independent of surface preparation, while HfCl4+H2O shows a surface dependence. Rutherford backscattering shows that HfCl4+H2O coverage per cycle is l3% of a monolayer on chemical oxide while TEMAHf+O3 coverage per cycle is 23% of a monolayer independent of surface. Low energy ion scattering, x-ray reflectivity, and x-ray photoelectron spectroscopy were used to understand film continuity, density, and chemical bonding. TEMAHf+O3 ALD shows continuous films, density >9gcm3, and bulk HfO bonding after 15 cycles [physical thickness (Tphys)=1.2±0.2nm] even on H-terminated Si(100). Conversely, on H-terminated Si(100), HfCl4+H2O requires 50 cycles (Tphys3nm) for continuous films and bulk HfO bonding. TEMAHf+O3 ALD was implemented in HfO2TiN transistor gate stacks, over the range 1.2nmTphys3.3nm. Electrical results are consistent with material analysis suggesting that at Tphys=1.2nmHfO2 properties begin to deviate from thick film properties. At Tphys=1.2nm, electrical thickness scaling slows, gate current density begins to deviate from scaling trendlines, and no hard dielectric breakdown occurs. Most importantly, n-channel transistors show improvement in peak and high field electron mobility as Tphys scales from 3.3 to 1.2nm. This improvement may be attributed to reduced charge trapping and Coulomb scattering in thinner films. Scaled HfO2 enables 1nm equivalent oxide thickness and 82% of universal SiO2 mobility.

1.
P.
Bai
 et al.,
Tech. Dig. - Int. Electron Devices Meet.
2004
,
657
.
2.
J.
Roberson
,
J. Vac. Sci. Technol. B
18
,
1785
(
2000
).
3.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
87
,
484
(
2000
).
4.
Z. B.
Zhang
,
S. C.
Song
,
C.
Huffman
,
J.
Barnett
,
N.
Moumen
,
H.
Alshareef
,
P.
Majhi
,
M.
Hussain
,
M. S.
Akbar
,
J. H.
Sim
,
S. H.
Bae
,
B.
Sassman
, and
B. H.
Lee
, Symp. VLSI Tech., p.
50
(
2005
).
5.
X.
Liu
,
S.
Ramanathan
, and
T. E.
Seidel
,
Mater. Res. Soc. Symp. Proc.
765
,
97
(
2003
).
6.
D. A.
Muller
,
T.
Sorsch
,
S.
Moccio
,
F. H.
Baumann
,
K.
Evans-Lutterodt
, and
G.
Timp
,
Nature (London)
399
,
759
(
1999
).
7.
G.
Timp
,
J.
Bude
,
K. K.
Bourdelle
,
J.
Garno
,
A.
Ghetti
,
H.
Gossmann
,
M.
Green
,
G.
Forsyth
,
Y.
Kim
, and
R.
Kleimann
,
Tech. Dig. - Int. Electron Devices Meet.
1999
,
55
.
8.
M. M.
Frank
,
Y. J.
Chabal
,
M. L.
Green
,
A.
Delabie
,
B.
Brijs
,
G. D.
Wilk
,
M.-Y.
Ho
,
E. B. O. d.
Rosa
,
I. J. R.
Baumvol
, and
F. C.
Stedile
,
Appl. Phys. Lett.
83
,
740
(
2003
).
9.
T.
Suntola
,
Appl. Surf. Sci.
100, 101
,
391
(
1996
).
10.
A.
Satta
,
J.
Schuhmacher
,
C. M.
Whelan
,
W.
Vandervorst
,
S. H.
Brongersma
,
G. P.
Beyer
,
K.
Maex
,
A.
Vantomme
,
M. M.
Viitanen
,
H. H.
Brongersma
, and
W. F. A.
Besling
,
J. Appl. Phys.
92
,
7641
(
2002
).
11.
R. L.
Puurunen
and
W.
Vandervorst
,
J. Appl. Phys.
96
,
7686
(
2004
).
12.
M. L.
Green
,
M.-Y.
Ho
,
B.
Busch
,
G. D.
Wilk
,
T.
Sorsch
,
T.
Conard
,
B.
Brijs
,
W.
Vandervorst
,
P. I.
Raisanen
,
D.
Muller
,
M.
Bude
, and
J.
Grazul
,
J. Appl. Phys.
92
,
7168
(
2002
).
13.
P. D.
Kirsch
,
J. H.
Sim
,
S. C.
Song
,
S.
Krishnan
,
J.
Peterson
,
H.-J.
Li
,
M.
Quevedo-Lopez
,
C. D.
Young
,
R.
Choi
,
N.
Moumen
,
P.
Majhi
,
Q.
Wang
,
J. G.
Ekerdt
,
G.
Bersuker
, and
B. H.
Lee
,
Proceedings of the 35th European Solid-State Device Research Conference
,
Grenoble, France
,
2005
, p.
367
.
14.
M. A.
Quevedo-Lopez
,
S. A.
Krishnan
,
P. D.
Kirsch
,
H.-J.
Li
,
J. H.
Sim
,
C.
Huffman
,
J. J.
Peterson
,
B. H.
Lee
,
G.
Pant
,
B. E.
Gnade
,
M. J.
Kim
,
R. M.
Wallace
,
D.
Guo
,
H.
Bu
, and
T. P.
Ma
,
Tech. Dig. - Int. Electron Devices Meet.
2005
,
437
.
16.
Y.
Widjaja
and
C. B.
Musgrave
,
Phys. Rev. B
64
,
205303
(
2001
).
17.
D. A.
McQuarrie
and
P. A.
Rock
,
General Chemistry
(
W. H. Freeman
, New York,
1987
).
18.
F.
DeSmedt
,
C.
Vinckier
,
I.
Cornelissen
,
S. D.
Gendt
, and
M.
Heyns
,
J. Electrochem. Soc.
147
,
1124
(
2000
).
19.
Y.
Xu
and
C. B.
Musgrave
,
Appl. Phys. Lett.
86
,
192110
(
2005
).
20.
P. D.
Kirsch
,
C. S.
Kang
,
J.
Lozano
,
J. C.
Lee
, and
J. G.
Ekerdt
,
J. Appl. Phys.
91
,
4353
(
2002
).
21.
J. -C.
Lee
,
S.-J.
Oh
,
M.
Cho
,
C. S.
Hwang
, and
R.
Jung
,
Appl. Phys. Lett.
84
,
1305
(
2004
).
22.
H. S.
Baik
,
M.
Kim
,
G. S.
Park
,
S. A.
Song
,
M.
Varela
,
A.
Franceschetti
,
S. T.
Pantelides
, and
S. J.
Pennycook
,
Appl. Phys. Lett.
85
,
672
(
2004
).
23.
G.
Timp
,
Tech. Dig. - Int. Electron Devices Meet.
1998
,
615
.
24.
S.
Datta
,
G.
Dewey
,
M.
Doczy
,
B. S.
Doyle
,
B.
Jin
,
J.
Kavalieros
,
R.
Kotlyar
,
M.
Metz
, and
N.
Zelick
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
653
(
2003
).
25.
M.
Hiratani
,
S.
Saito
,
Y.
Shimamoto
, and
K.
Torii
,
Jpn. J. Appl. Phys., Part 1
41
,
4521
(
2002
).
26.
M.
Fischetti
,
J. Appl. Phys.
90
,
4587
(
2001
).
27.
S.
Saito
,
D.
Hisamoto
,
S.
Kimura
, and
H.
Hiratani
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
797
.
28.
B. H.
Lee
,
Tech. Dig. - Int. Electron Devices Meet.
2004
,
859
.
29.
E. P.
Gusev
,
Tech. Dig. - Int. Electron Devices Meet.
2001
,
451
.
30.
J. H.
Sim
,
S. C.
Song
,
P. D.
Kirsch
,
C. D.
Young
,
R.
Choi
,
D. L.
Kwong
,
B. H.
Lee
, and
G.
Bersuker
,
INFOS
, Leuven (
2005
).
31.
S.
Takagi
,
A.
Toriuni
,
M.
Iwase
, and
H.
Tango
,
IEEE Trans. Electron Devices
41
,
2357
(
1994
).
32.
W. J.
Zhu
and
T. P.
Ma
,
IEEE Electron Device Lett.
25
,
89
(
2004
).
33.
G.
Bersuker
,
C. S.
Park
,
J.
Barnett
,
P.
Lysaght
,
P. D.
Kirsch
,
B. H.
Lee
,
B.
Foran
,
J.
Watling
,
A.
Asenov
,
K. v.
Benthem
,
S.
Pennycook
,
J.
Greer
, and
A.
Korkin
, Semiconductor Interface Specialists Conference (accepted).
You do not currently have access to this content.