We report the selective excitation of the flexural modes of microcantilevers in aqueous solutions, by applying the photothermal excitation technique. The experiments show that a particular vibration mode can be efficiently excited by focusing the intensity-modulated laser beam on regions of high curvature of the vibration shape. In addition, the resulting resonant peaks in liquid appear distorted by an amplitude component that decreases with the frequency. This distortion produces a shift of the resonance to lower frequencies. A theoretical model based on the transformation of optical energy into mechanical energy via an intermediate thermal stage is proposed to interpret the experimental results. The theory shows that the driven oscillation of the cantilever depends on the curvature of the eigenmode at the excitation position and the heating induced by the excitation laser, which decreases with the frequency. The results reported here set the basis for efficient excitation of high vibration modes in liquids and for optimized design of optically driven microresonators.

1.
A.
Raab
,
W.
Han
,
D.
Badt
,
S. J.
Smith-Gill
,
S. M.
Lindsay
,
H.
Schindler
, and
P.
Hinterdorfer
,
Nat. Biotechnol.
17
,
902
(
1999
).
2.
S. I.
Lee
,
S. W.
Howell
,
A.
Raman
, and
R.
Reifenberger
,
Phys. Rev. B
66
,
115409
(
2002
).
3.
J.
Tamayo
,
A. D.
Humphris
,
R. J.
Owen
, and
M. J.
Miles
,
Biophys. J.
81
,
526
(
2001
).
4.
B.
Illic
,
D.
Czaplewski
,
H. G.
Craighead
,
P.
Neuzil
,
C.
Campagnolo
, and
C.
Batt
,
Appl. Phys. Lett.
77
,
450
(
2000
).
5.
B.
Illic
,
Y.
Yang
, and
H.
Craighead
,
Appl. Phys. Lett.
85
,
2604
(
2004
).
6.
A.
Gupta
,
D.
Akin
, and
R.
Bashir
,
Appl. Phys. Lett.
84
,
1976
(
2004
).
7.
K. Y.
Gfeller
,
N.
Nugaeva
, and
M.
Hegner
,
Biosens. Bioelectron.
21
,
528
(
2005
).
8.
J.
Tamayo
,
A. D. L.
Humphris
,
A. M.
Malloy
, and
M. J.
Miles
,
Ultramicroscopy
86
,
167
(
2001
).
9.
K. L.
Ekinci
,
X. M. H.
Huang
, and
M. L.
Roukes
,
Appl. Phys. Lett.
84
,
4469
(
2004
).
10.
G. Y.
Chen
,
R. J.
Warmack
,
A.
Huang
, and
T.
Thundat
,
J. Appl. Phys.
78
,
1465
(
1995
).
11.
T. E.
Schäffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. A.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
12.
W.
Han
,
S. M.
Lindsay
, and
T.
Jing
,
Appl. Phys. Lett.
69
,
4111
(
1996
).
13.
S.
Dohn
,
R.
Sandberg
,
W.
Svendsen
, and
A.
Boisen
,
Appl. Phys. Lett.
86
,
233501
(
2005
).
14.
B.
Illic
,
S.
Krylov
,
K.
Aubin
,
R.
Reichenbach
, and
H. G.
Craighead
,
Appl. Phys. Lett.
86
,
193114
(
2005
).
15.
G. C.
Ratcliff
,
D. A.
Erie
, and
R.
Superfine
,
Appl. Phys. Lett.
72
,
1911
(
1998
).
16.
N. V.
Lavrik
and
P. G.
Datskos
,
Appl. Phys. Lett.
82
,
2697
(
2003
).
17.
O.
Marti
,
A.
Ruf
,
M.
Hipp
,
H.
Bielefeldt
,
J.
Colchero
, and
J.
Mlynek
,
Ultramicroscopy
42
,
345
(
1992
).
18.
S.
Rast
,
C.
Wattinger
,
U.
Gysin
, and
E.
Meyer
,
Rev. Sci. Instrum.
71
,
2772
(
2000
).
19.
20.
H.
Gröber
,
S.
Erk
,
U.
Grigull
,
Die Grundgesetze der Wärmeübertragung
, 3rd ed. (
Springer-Verlag
,
Berlin-Göttingen-Heidelberg
,
1954
).
21.
R.
Sandberg
,
W.
Svendsen
,
K.
Molhave
, and
A.
Boisen
,
J. Micromech. Microeng.
15
,
1454
(
2005
).
22.
J. W.
Yi
,
W. Y.
Shih
, and
W.-H.
Shih
,
J. Appl. Phys.
91
,
1680
(
2002
).
23.
S. S.
Oueini
,
A. H.
Nayfeh
, and
J. R.
Pratt
,
Arch. Appl. Mech.
69
,
585
(
1999
).
You do not currently have access to this content.