In apertureless near-field optical microscopy the vertical dithering of the tip, associated with demodulation at higher harmonics (n>1), allows us to suppress the far-field background, providing artifact free elastic scattering images. This paper analyzes, both theoretically and experimentally, the physical origin of the background signal at the different harmonics and the mechanisms underlying its rejection for the general case of propagative-field illumination. We show that Fourier components of the background must be expected at every harmonic, evidencing why demodulation at higher harmonics is not an inherently background-free technique, and assessing the experimental conditions in which it becomes like that. In particular, we put forward the fundamental roles of both the harmonic order and the tip oscillation amplitude in the background suppression mechanisms. Furthermore, we outline how the lock-in detection of the signals amplitude can enhance the nonlinear dependence of the background on the tip-sample distance. Such effect provides a more subtle source of topography artifacts since the optical maps become qualitatively uncorrelated from the topographic counterpart, requiring an upgrade of the criteria to assess the absence of artifacts from the optical maps.

1.
D. W.
Pohl
,
W.
Denk
, and
M.
Lanz
,
Appl. Phys. Lett.
44
,
651
(
1984
);
A.
Lewis
,
M.
Isaacson
,
A.
Harootunian
, and
A.
Murray
,
Ultramicroscopy
13
,
227
(
1984
).
2.
E.
Betzig
,
J. K.
Trautman
,
T. D.
Harris
,
J. S.
Weiner
, and
R. L.
Kostelak
,
Science
251
,
1468
(
1991
).
3.
S.
Patanè
,
P. G.
Gucciardi
,
M.
Labardi
, and
M.
Allegrini
,
Riv. Nuovo Cimento
27
,
1
(
2004
).
4.
L.
Novotny
,
R. X.
Bian
, and
X.-S.
Xie
,
Phys. Rev. Lett.
79
,
645
(
1997
).
5.
F.
Zenhausern
,
Y.
Martin
, and
H. K.
Wickramasinghe
,
Science
269
,
1083
(
1995
).
6.
A.
Lahrech
,
R.
Bachelot
,
P.
Gleyzes
, and
A. C.
Boccara
,
Opt. Lett.
21
,
1315
(
1996
).
7.
B.
Hecht
,
H.
Bielefeldt
,
Y.
Inouye
,
D. W.
Pohl
, and
L.
Novotny
,
J. Appl. Phys.
81
,
2492
(
1997
).
8.
P. G.
Gucciardi
and
M.
Colocci
,
Appl. Phys. Lett.
79
,
1543
(
2001
).
9.
B.
Knoll
and
F.
Keilmann
,
Opt. Commun.
182
,
321
(
2000
).
10.
R.
Hillenbrand
and
F.
Keilmann
,
Phys. Rev. Lett.
85
,
3029
(
2000
).
11.
R.
Hillenbrand
and
F.
Keilmann
,
Appl. Phys. Lett.
80
,
25
(
2001
).
12.
M.
Labardi
,
S.
Patanè
, and
M.
Allegrini
,
Appl. Phys. Lett.
77
,
621
(
2000
).
13.
T.
Taubner
,
F.
Keilmann
, and
R.
Hillenbrand
,
Nano Lett.
4
,
1669
(
2004
).
14.
L.
Stebunova
,
B. B.
Abramitchev
, and
G. C.
Walker
,
Rev. Sci. Instrum.
74
,
3670
(
2003
).
15.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
,
Nature (London)
418
,
159
(
2002
).
16.
N.
Ocelic
and
R.
Hillenbrand
,
Nat. Mater.
3
,
606
(
2004
).
17.
M.
Labardi
,
S.
Patanè
, and
M.
Allegrini
, in
Proceedings of the International School of Physics “E. Fermi” Course CXLIV, Varenna, Italy, 2001
, edited by
M.
Allegrini
,
N.
Garcia
, and
O.
Marti
(
IOS
,
Amsterdam
,
2001
), p.
425
.
18.
J. N.
Walford
 et al.,
J. Appl. Phys.
89
,
5159
(
2001
).
19.
N.
Maghelli
,
M.
Labardi
,
S.
Patanè
,
F.
Irrera
, and
M.
Allegrini
,
J. Microsc.
202
,
84
(
2001
).
20.
I.
Stefanon
,
S.
Blaize
,
A.
Bruyant
,
S.
Aubert
,
G.
Lerondel
,
R.
Bachelot
, and
P.
Royer
,
Opt. Express
13
,
5553
(
2005
).
21.
T.
Taubner
,
F.
Keilmann
, and
R.
Hillenbrand
,
J. Korean Phys. Soc.
47
,
S213
(
2005
).
22.
S.
Hudlet
 et al.,
Opt. Commun.
230
,
245
(
2004
).
23.
F.
Formanek
,
Y.
De Wilde
, and
L.
Aigouy
,
J. Appl. Phys.
93
,
9548
(
2003
).
24.
D.
Roy
,
S. H.
Leong
, and
M. E.
Welland
,
J. Korean Phys. Soc.
47
,
S140
(
2005
).
25.
F.
Formanek
,
Y.
De Wilde
, and
L.
Aigouy
,
Ultramicroscopy
103
,
133
(
2005
).
26.
B.
Ren
,
G.
Picardi
, and
B.
Pettinger
,
Rev. Sci. Instrum.
75
,
837
(
2004
).
27.
K.
Dickmann
,
F.
Demming
, and
J.
Jersch
,
Rev. Sci. Instrum.
67
,
845
(
1996
).
28.
E.
Cefalì
,
S.
Patanè
,
P. G.
Gucciardi
,
M.
Labardi
, and
M.
Allegrini
,
J. Microsc.
210
,
262
(
2003
).
29.
P. G.
Gucciardi
,
G.
Bachelier
,
A.
Mlayah
, and
M.
Allegrini
,
Rev. Sci. Instrum.
76
,
036105
(
2005
).
30.
K.
Karrai
and
R. D.
Grober
,
Appl. Phys. Lett.
66
,
1842
(
1995
).
31.
K.
Karrai
, in
Le Champ Proche Optique
, edited by
D.
Courjon
and
C.
Bainier
(
Springer-Verlag
,
Paris
,
2001
).
32.
M. R.
Spiegel
and
J.
Liu
,
Mathematical Handbook of Formulas and Tables
, 2nd ed. (
McGraw-Hill
,
New York
,
1999
).
33.
R.
Bachelot
,
P.
Gleyzes
, and
A. C.
Boccara
,
Opt. Lett.
20
,
1924
(
1995
).
34.
P.-M.
Adam
,
P.
Royer
,
R.
Laddada
, and
J.-L.
Bijeon
,
Ultramicroscopy
71
,
327
(
1998
).
35.

Here Rn is considered as the ratio between the BKG amplitude An and the amplitude of the dc component A0 calculated in the small oscillations approximation (ka01).

36.
P. G.
Gucciardi
,
M.
Labardi
,
S.
Gennai
,
F.
Lazzeri
, and
M.
Allegrini
,
Rev. Sci. Instrum.
68
,
3088
(
1997
).
37.
M.
Labardi
,
P. G.
Gucciardi
,
M.
Allegrini
, and
C.
Pelosi
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S397
(
1998
).
38.

The periodicity is exactly halved only if the offset is null.

You do not currently have access to this content.