Ion-beam induced effects in α-Al2O3 of c, a, and r orientations were studied by Rutherford backscattering spectrometry (RBS) in channeling configuration using 1.4MeV He ions. 150keV Ar, 150keV K, or 80keV Na ions were step by step implanted at 15K followed immediately by the RBS analysis without changing the sample environment. Defect annealing was observed during the RBS measurement, which is attributed to the electronic energy loss of the He ions. A similar effect occurs due to the electronic energy loss of the implanted ions, resulting in a reduced defect concentration between surface and profile maximum. The electronic energy loss of ions may change the charge state of defects, thus enhancing their mobility and causing defect annealing. The results suggest that within the collision cascade of individual ions in perfect sapphire only point defects are produced, the concentration of which is well reproduced by SRIM calculations taking into account suggested values of the displacement energies of EdAl=20eV and EdO=50eV for aluminum and oxygen, respectively. The lower efficiency for point defect production measured in c-oriented material can be explained by the heavily reduced visibility of Al atoms sitting on vacant octahedral sites, which are hidden in this direction. Point defect recombination is observed when the collision cascades start to overlap. Above a critical concentration point defects are altered into clusters which rapidly grow during further irradiation until a saturation is reached.

1.
C. W.
White
,
C. J.
McHargue
,
P. S.
Sklad
,
L. A.
Boatner
, and
G. C.
Farlow
,
Mater. Sci. Rep.
4
,
41
(
1989
).
2.
C. J.
McHargue
,
Mater. Sci. Eng., A
253
,
94
(
1998
).
3.
S. J.
Zinkle
and
C.
Kinoshita
,
J. Nucl. Mater.
251
,
200
(
1997
).
4.
S. J.
Zinkle
,
V. A.
Skuratov
, and
D. T.
Hoelzer
,
Nucl. Instrum. Methods Phys. Res. B
191
,
758
(
2002
).
5.
C. J.
McHargue
,
P. S.
Sklad
, and
C. W.
White
,
Nucl. Instrum. Methods Phys. Res. B
46
,
79
(
1990
).
6.
E. D.
Specht
,
D. A.
Walko
, and
S. J.
Zinkle
,
Nucl. Instrum. Methods Phys. Res. B
84
,
323
(
1994
).
7.
C. J.
McHargue
,
G. C.
Farlow
,
G. M.
Begun
,
J. M.
Williams
,
C. W.
White
,
B. R.
Appleton
,
P. S.
Sklad
, and
P.
Angelini
,
Nucl. Instrum. Methods Phys. Res. B
16
,
212
(
1986
).
8.
E.
Alves
,
M. F.
da Silva
,
J. G.
Marques
,
J. C.
Soares
, and
K.
Freitag
,
Nucl. Instrum. Methods Phys. Res. B
141
,
353
(
1998
).
9.
H.
Naramoto
,
Y.
Aoki
, and
H.
Abe
,
Nucl. Instrum. Methods Phys. Res. B
127/128
,
599
(
1997
).
10.
G. C.
Farlow
,
P. S.
Sklad
,
C. W.
White
.
C. J.
McHargue
, and
B. R.
Appleton
,
Mater. Res. Soc. Symp. Proc.
60
,
387
(
1986
).
11.
C. J.
McHargue
,
E.
Alves
,
M. F.
da Silva
, and
J. C.
Soares
,
Nucl. Instrum. Methods Phys. Res. B
148
,
730
(
1999
).
12.
E.
Alves
,
M. F.
da Silva
,
J. C.
Soares
,
T.
Monteiro
,
J.
Soares
, and
L.
Santos
,
Nucl. Instrum. Methods Phys. Res. B
166
,
183
(
2000
).
13.
B.
Breeger
,
E.
Wendler
,
W.
Trippensee
,
Ch.
Schubert
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. B
174
,
199
(
2001
).
14.
K.
Gärtner
,
Nucl. Instrum. Methods Phys. Res. B
227
,
522
(
2005
).
15.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
2003
).
16.
C. S.
Schnohr
,
E.
Wendler
,
K.
Gärtner
,
K.
Ellmer
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. B
(in press).
17.
C. S.
Schnohr
, Diploma thesis (English),
Friedrich-Schiller-Universität Jena
,
2005
.
18.
N.
Hecking
,
K. F.
Heidemann
, and
E.
TeKaat
,
Nucl. Instrum. Methods Phys. Res. B
15
,
760
(
1986
).
19.
C. W.
White
,
G. C.
Farlow
,
C. J.
McHargue
,
P. S.
Sklad
,
M. P.
Angelini
, and
B. R.
Appleton
,
Nucl. Instrum. Methods Phys. Res. B
7/8
,
473
(
1985
).
20.
H.
Abe
,
S.
Yamamoto
, and
H.
Naramoto
,
Nucl. Instrum. Methods Phys. Res. B
127/128
,
170
(
1997
).
You do not currently have access to this content.