Electrical properties of a chemical sensor constructed from mats of GaN nanowires decorated with gold nanoparticles as a function of exposure to Ar, N2, and methane are presented. The Au nanoparticle decorated nanowires exhibited chemically selective electrical responses. The sensor exhibits a nominal response to Ar and slightly greater response for N2. Upon exposure to methane the conductivity is suppressed by 50% relative to vacuum. The effect is fully reversible and is independent of exposure history. We offer a model by which the change in the current is caused by a change in the depletion depth of the nanowires, the change in the depletion depth being due to an adsorbate induced change in the potential on the gold nanoparticles on the surface of the nanowires.

1.
Y. J.
Kim
,
Y. S.
Yang
,
S.-C.
Ha
,
S. M.
Cho
,
Y. S.
Kim
,
H. Y.
Kim
,
H.
Yang
, and
Y. T.
Kim
,
Sens. Actuators B
106
,
189
(
2005
).
2.
A.
Star
,
T.-R.
Han
,
V.
Joshi
,
J.-C.
Gabriel
, and
G.
Gruener
,
Adv. Mater. (Weinheim, Ger.)
16
,
2049
(
2004
).
3.
H.
Liu
,
J.
Kameoka
,
D. A.
Czaplewski
, and
H. G.
Craighead
,
Nano Lett.
4
,
671
(
2004
).
4.
S. D.
Puckett
,
J. A.
Heuser
,
J. D.
Keith
,
W. U.
Spendel
, and
G. E.
Pacey
,
Talanta
66
,
1242
(
2005
).
5.
A.
Sugunan
,
C.
Thanachayanont
,
J.
Dutta
, and
J. G.
Hilborn
,
Sci. Technol. Adv. Mater.
6
,
335
(
2005
).
6.
C.
Xue
,
L.
Yang
,
C.
Wang
, and
H.
Zhuang
,
Appl. Surf. Sci.
217
,
78
(
2003
).
7.
K. W.
Chang
and
J. J.
Wu
,
J. Phys. Chem. B
106
,
7796
(
2002
).
8.
A. D.
LaLonde
,
M. G.
Norton
,
D.
Zhang
,
D.
Gangadean
,
A.
Alkhateeb
,
R.
Padmanabhan
, and
D. N.
McIlroy
,
J. Mater. Res.
20
,
3021
(
2005
).
9.
J.
Kim
,
H.
So
,
J.
Park
,
J.
Kim
,
J.
Kim
,
C.
Lee
, and
S.
Lyu
,
Appl. Phys. Lett.
80
,
3548
(
2002
).
10.
G. F.
McLane
,
L.
Casas
,
S. J.
Pearton
, and
C. R.
Abernathy
,
Appl. Phys. Lett.
66
,
3328
(
1995
).
11.
13.
A.
Yu
,
Z.
Liang
,
J.
Cho
, and
F.
Caruso
,
Nano Lett.
3
,
1203
(
2003
).
14.
J.
Geng
,
M.
Thomas
,
D.
Shephard
, and
B.
Johnson
,
Chem. Commun. (Cambridge)
2005
,
1895
.
15.
M.
Khan
,
T.
Detchprohm
,
P.
Hacke
,
K.
Hiramatsu
, and
N.
Sawaki
,
J. Phys. D
28
,
1169
(
1995
).
16.
Y.
Kribes
,
I.
Harrison
,
B.
Tuck
,
T. S.
Cheng
, and
C. T.
Foxon
,
Semicond. Sci. Technol.
12
,
913
(
1997
).
17.
A.
Kolmakov
,
D. O.
Klenov
,
Y.
Lilach
,
S.
Stemmer
, and
M.
Moskovits
,
Nano Lett.
5
,
667
(
2005
).
18.
S.
Lee
,
H.
Choi
,
P.
Pauzauskie
,
P.
Yang
,
N.
Cho
,
H.
Park
,
E.
Suh
,
K.
Lim
, and
H.
Lee
,
Phys. Status Solidi B
241
,
2775
(
2004
).
19.
J. P.
Colinge
and
C. A.
Colinge
,
Physics of Semiconductor Devices
(
Kluwer Academic
,
Dordrecht
,
2002
).
20.
S. M.
Sze
,
Physics of Semiconductor Devices
, (
Wiley
,
New York
1981
).
21.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
).
22.
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
(
Wiley
,
New York
,
2001
).
23.
Semiconductors—Basic Data
, edited by
O.
Madelung
(
Springer
,
Berlin
,
1996
).
24.
V.
Zhdanov
,
Surf. Sci.
512
,
L331
(
2002
).
You do not currently have access to this content.