While it is known that F modifies dopant diffusion in crystalline Si, the physical mechanisms behind this process are still unclear. In this work we report experimental studies about the F control of the point defect density in preamorphized Si layers. These studies put the basis for the understanding of the F behavior and for the realization of ultra-shallow junctions. We first investigated the F incorporation process during the solid phase epitaxy (SPE) of amorphous Si layers. We elucidated the role of the SPE temperature on the F incorporation and suggested a new route towards a F profile engineering. Moreover, we explained the role of F in modifying the point defect population (self-interstitials, Is, and vacancies, Vs), employing B and Sb spike layers as markers for Is and Vs, respectively. We clearly showed that F decreases the B diffusion while enhances the Sb one, pointing out the capacity to induce an Is undersaturation or a Vs supersaturation. These data rule out the hypothesis of a chemical bonding between F and the dopants. Such F ability in modifying the Is/Vs density resulted to be a transient effect, because strictly correlated with the presence of F in the Si samples, which decreases with the annealing time. In addition, we evidenced that even if F is spatially separated from B, i.e., localized between shallow-implanted B and the end-of-range (EOR) region, it still suppresses the enhancement of B diffusivity, due to the EOR defects dissolution. These studies, besides improving the current understanding of the physical mechanisms by which F influences the dopant diffusion in Si, could be helpful for the realization of ultra-shallow junctions for the future metal-oxide-semiconductor devices.

1.
International Technology Roadmap for Semiconductors (ITRS
, http://public.itrs.net
2.
W. K.
Hofker
,
H. W.
Werner
,
D. P.
Oosthoek
, and
H. A. M.
de-Grefte
,
Appl. Phys.
2
,
165
(
1973
).
3.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Lindsay
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
), and references therein.
4.
D. J.
Eaglesham
,
P. A.
Stolk
,
H.-J.
Gossmann
, and
J. M.
Poate
,
Appl. Phys. Lett.
65
,
2305
(
1994
).
5.
N. E. B.
Cowern
,
G. F. A.
van de Walle
,
P. C.
Zalm
, and
D. W. E.
Vandenhoudt
,
Appl. Phys. Lett.
65
,
2981
(
1994
).
6.
I.
Avci
,
M.
Law
,
E.
Kuryliw
,
A. F.
Saavedra
, and
K. S.
Jones
,
J. Appl. Phys.
95
,
2452
(
2004
).
7.
C.
Bonafos
,
D.
Mathiot
, and
A.
Claverie
,
J. Appl. Phys.
83
,
3008
(
1998
).
8.
A.
Claverie
,
L.
Laânab
,
C.
Bonafos
,
C.
Bergaud
,
A.
Martinez
, and
D.
Mathiot
,
Nucl. Instrum. Methods Phys. Res. B
84
,
190
(
1994
).
9.
R. G.
Wilson
,
J. Appl. Phys.
54
,
6879
(
1983
).
10.
G.
Fuse
,
T.
Hirao
,
K.
Inoue
,
S.
Takayanagi
, and
Y.
Yaegashi
,
J. Appl. Phys.
53
,
3650
(
1982
).
11.
M. Y.
Tsai
and
B. G.
Streetman
,
J. Appl. Phys.
50
,
183
(
1979
).
12.
T. H.
Huang
,
H.
Kinoshita
, and
D. L.
Kwong
,
Appl. Phys. Lett.
65
,
1829
(
1994
).
13.
E. N.
Shauly
and
S.
Lachman-Shalem
,
J. Vac. Sci. Technol. B
22
,
592
(
2004
).
14.
B. J.
Pawlak
,
R.
Surdeanu
,
B.
Colombeau
,
A. J.
Smith
,
N. E. B.
Cowern
,
R.
Lindsay
,
W.
Vandervorst
,
B.
Brijis
,
O.
Richard
, and
F.
Cristiano
,
Appl. Phys. Lett.
84
,
2055
(
2004
).
15.
N. E. B.
Cowern
,
B.
Colombeau
,
J.
Benson
,
A. J.
Smith
,
W.
Lerch
,
S.
Paul
,
T.
Graf
,
F.
Cristiano
,
X.
Hebras
, and
D.
Bolze
,
Appl. Phys. Lett.
86
,
101905
(
2005
).
16.
D. F.
Downey
,
J. W.
Chow
,
E.
Ishida
, and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
1263
(
1998
).
17.
Y.-J.
Park
and
J.-J.
Kim
,
J. Appl. Phys.
85
,
803
(
1999
).
18.
A.
Mokhberi
,
R.
Kasnavi
,
P. B.
Griffin
, and
J. D.
Plummer
,
Appl. Phys. Lett.
80
,
3530
(
2002
).
19.
G.
Impellizzeri
,
J. H. R.
dos Santos
,
S.
Mirabella
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
84
,
1862
(
2004
).
20.
S.
Mirabella
,
G.
Impellizzeri
,
E.
Bruno
,
L.
Romano
,
M. G.
Grimaldi
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
86
,
121905
(
2005
).
21.
G.
Impellizzeri
, Ph.D. thesis,
University of Catania
,
2004
.
22.
G.
Impellizzeri
,
J. H. R.
dos Santos
,
S.
Mirabella
,
E.
Napolitani
,
A.
Carnera
, and
F.
Priolo
,
Nucl. Instrum. Methods Phys. Res. B
230
,
220
(
2005
).
23.
T.
Sands
,
J.
Washburn
,
R.
Gronsky
,
W.
Maszara
,
D. K.
Sadana
, and
G. A.
Rozgonyi
,
Appl. Phys. Lett.
45
,
982
(
1984
).
24.
J.
Narayan
,
O. W.
Holland
,
W. H.
Christie
, and
J. J.
Wortman
,
J. Appl. Phys.
57
,
2709
(
1985
).
25.
I. W.
Wu
and
L. J.
Chen
,
J. Appl. Phys.
58
,
3032
(
1985
).
26.
C. W.
Nieh
and
L. J.
Chen
,
Appl. Phys. Lett.
48
,
1528
(
1986
).
27.
C. W.
Nieh
and
L. J.
Chen
,
J. Appl. Phys.
60
,
3114
(
1986
).
28.
C. W.
Nieh
and
L. J.
Chen
,
J. Appl. Phys.
60
,
3546
(
1986
).
29.
C. H.
Chu
,
J. J.
Yang
, and
L. J.
Chen
,
Nucl. Instrum. Methods Phys. Res. B
74
,
138
(
1993
).
30.
J. J.
Yang
and
L. J.
Chen
,
Nucl. Instrum. Methods Phys. Res. B
121
,
291
(
1997
).
31.
Cs.
Szeles
,
B.
Nielsen
,
P.
Asoka-Kumar
,
K. G.
Lynn
,
M.
Anderle
,
T. P.
Ma
, and
G. W.
Rubloff
,
J. Appl. Phys.
76
,
3403
(
1994
).
32.
X. D.
Pi
,
C. P.
Burrows
, and
P. G.
Coleman
,
Phys. Rev. Lett.
90
,
015901
(
2003
).
33.
P. J.
Simpson
,
Z.
Jenei
,
P.
Asoka-Kumar
,
R. R.
Robison
, and
M. E.
Law
,
Appl. Phys. Lett.
85
,
1538
(
2004
).
34.
G. M.
Lopez
,
V.
Fiorentini
,
G.
Impellizzeri
,
S.
Mirabella
, and
E.
Napolitani
,
Phys. Rev. B
72
,
045219
(
2005
).
35.
H. A. W.
El Mubarek
and
P.
Ashburn
,
Appl. Phys. Lett.
83
,
4134
(
2003
).
36.
H. A. W.
El Mubarek
,
J. M.
Bonar
,
G. D.
Dilliway
,
P.
Ashburn
,
M.
Karunaratne
,
F.
Willoughby
,
Y.
Wang
,
P. L. F.
Hemment
,
R.
Price
,
J.
Zhang
, and
P.
Ward
,
J. Appl. Phys.
96
,
4114
(
2004
).
37.
M. N.
Kham
,
H. A. W.
El Mubarek
,
J. M.
Bonar
, and
P.
Ashburn
,
Appl. Phys. Lett.
87
,
011902
(
2005
).
38.
U.
Gösele
,
P.
Laveant
,
R.
Scholz
,
N.
Engler
, and
P.
Werner
,
Mater. Res. Soc. Symp. Proc.
610
,
B7
1
(
2000
).
39.
P. A.
Stolk
,
D. J.
Eaglesham
,
H.-J.
Gossmann
, and
J. M.
Poate
,
Appl. Phys. Lett.
66
,
1370
(
1995
).
40.
E.
Napolitani
,
A.
Coati
,
D.
De Salvador
,
A.
Carnera
,
S.
Mirabella
,
S.
Scalese
, and
F.
Priolo
,
Appl. Phys. Lett.
79
,
4145
(
2001
).
41.
S.
Mirabella
,
A.
Coati
,
D.
De Salvador
,
E.
Napolitani
,
A.
Mattoni
,
G.
Bisognin
,
M.
Berti
,
A.
Carnera
,
A. V.
Drigo
,
S.
Scalese
,
S.
Pulvirenti
,
A.
Terrasi
, and
F.
Priolo
,
Phys. Rev. B
65
,
045209
(
2002
).
42.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Matter
(
Pergamon Press
, New York,
1985
).
43.
M. Y.
Tsai
,
D. S.
Day
,
B. G.
Streetman
,
P.
Williams
, and
C. A.
Evans
, Jr.
,
J. Appl. Phys.
50
,
188
(
1979
).
44.
I.
Suni
,
U.
Shreter
,
M.-A.
Nicolet
, and
J. E.
Baker
,
J. Appl. Phys.
56
,
273
(
1984
).
45.
A. J.
Walker
,
J. Appl. Phys.
71
,
2033
(
1992
).
46.
S.-P.
Jeng
,
T.-P.
Ma
,
R.
Canteri
,
M.
Anderle
, and
G. W.
Rubloff
,
Appl. Phys. Lett.
61
,
1310
(
1992
).
47.
G. R.
Nash
,
J. F. W.
Schiz
,
C. D.
Marsh
,
P.
Ashburn
, and
G. R.
Booker
,
Appl. Phys. Lett.
75
,
3671
(
1999
).
48.
G. L.
Olson
, and
J. A.
Roth
,
Mater. Sci. Rep.
3
,
1
(
1988
), and references therein.
49.
Y. M.
Haddara
,
B. T.
Folmer
,
M. E.
Law
, and
T.
Buyuklimanli
,
Appl. Phys. Lett.
77
,
1976
(
2000
).
50.
N. E. B.
Cowern
,
K. T. F.
Janssen
,
G. F. A.
van de Walle
, and
D. J.
Gravesteijn
,
Phys. Rev. Lett.
65
,
2434
(
1990
).
51.
M.
Diebel
and
S. T.
Dunham
,
Phys. Rev. Lett.
93
,
245901
(
2004
).
You do not currently have access to this content.