In this work we perform a systematic study of the dissolution of a dislocation loop layer under the influence of inert SiO2Si and nitrogen-rich SiO2Si interfaces. The composition of the dislocation loop layer was just after its formation 10%–20% Frank dislocation loops and 90%–80% perfect prismatic loops. During subsequent inert (N2) ambient annealing the differences of the kinetics between the two loop populations have been studied as a function of the interface type. It has been shown that during the nonconservative Ostwald ripening process the defect band loses interstitials mainly due to the dissolution of perfect prismatic loops, while Frank loops remain almost unaffected by the presence of both interfaces. In parallel a competition between the interface and the population of Frank loops in absorbing the interstitials released by the prismatic loops took place. The nitrogen-rich SiO2Si interface has been proved in general a less effective interstitial sink than the common one and under specific annealing conditions less effective even than the small Frank loops population.

1.
L.
Laanab
,
C.
Bergaud
,
C.
Bonafos
,
A.
Martinez
, and
A.
Claverie
,
Nucl. Instrum. Methods Phys. Res. B
96
,
236
(
1995
).
2.
A.
Claverie
,
B.
Colombeau
,
B.
de Mauduit
,
C.
Bonafos
,
X.
Hebras
,
G.
Ben Assayag
, and
F.
Cristiano
,
Appl. Phys. A: Mater. Sci. Process.
76
,
1025
(
2003
).
3.
G. Z.
Pan
,
K. N.
Tu
, and
S.
Prussin
,
J. Appl. Phys.
81
,
78
(
1997
).
4.
J.
Liu
,
M. E.
Law
, and
K. S.
Jones
,
Solid-State Electron.
38
,
1305
(
1995
).
5.
C.
Bonafos
,
D.
Mathiot
, and
A.
Claverie
,
J. Appl. Phys.
83
,
3008
(
1998
).
6.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Linsday
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
).
7.
D.
Skarlatos
,
M.
Omri
,
A.
Claverie
, and
D.
Tsoukalas
,
J. Electrochem. Soc.
146
,
2276
(
1999
).
8.
D.
Skarlatos
,
D.
Tsoukalas
,
L. F.
Giles
, and
A.
Claverie
,
J. Appl. Phys.
87
,
1103
(
2000
).
9.
J. K.
Listebarger
,
K. S.
Jones
, and
J. A.
Slinkman
,
J. Appl. Phys.
73
,
4815
(
1993
).
10.
S. B.
Herner
,
V.
Krishnamoorthy
,
K. S.
Jones
,
T. K.
Mogi
,
M. O.
Thompson
, and
H. J.
Gossmann
,
J. Appl. Phys.
81
,
7175
(
1997
).
11.
M.
Omri
,
C.
Bonafos
,
A.
Claverie
,
A.
Nejim
,
F.
Cristiano
,
D.
Alquier
,
A.
Martinez
, and
N. E. B.
Cowern
,
Nucl. Instrum. Methods Phys. Res. B
120
,
5
(
1995
).
12.
J. D.
Plummer
,
M. D.
Deal
, and
P. B.
Griffin
,
Silicon VLSI Technology
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
2000
).
13.
E. P.
Gusev
,
H.-C.
Lu
,
E. L.
Garfunkel
,
T.
Gustafsson
, and
M. L.
Green
,
IBM J. Res. Dev.
43
,
265
(
1999
).
14.
A. C.
Adams
, in
VLSI Technology
, 2nd Ed., edited by
S. M.
Sze
(
McGraw-Hill
,
New York
,
1988
), Chap. 6, p.
260
.
15.
D.
Davazoglou
and
V.
Em. Vamvakas
,
J. Electrochem. Soc.
150
,
F90
(
2003
).
16.
V.
Em. Vamvakas
and
D.
Davazoglou
,
J. Vac. Sci. Technol. B
23
,
1956
(
2005
).
17.
F.
Cristiano
,
J.
Grisolia
,
B.
Colombeau
,
M.
Omri
,
B.
de Mauduit
, and
A.
Claverie
,
J. Appl. Phys.
87
,
8420
(
2000
).
18.
M.
Bhat
,
H. H.
Jia
, and
D. L.
Kwong
,
J. Appl. Phys.
78
,
2767
(
1995
).
19.
C.
Tsamis
and
D.
Tsoukalas
,
J. Appl. Phys.
84
,
6650
(
1998
).
20.
C.
Tsamis
,
D. N.
Kouvatsos
, and
D.
Tsoukalas
,
Appl. Phys. Lett.
69
,
2725
(
1996
).
21.
S. M.
Hu
,
J. Appl. Phys.
57
,
4527
(
1985
).
You do not currently have access to this content.