Comparisons between adhesion hysteresis and friction at nanometer and micrometer length scales were investigated experimentally and theoretically. Nanoscale adhesion hysteresis was measured using the ultrasonic force microscopy (UFM) on mica, calcite, and a few metallic samples (Pt, Au, Cu, Zn, Ti, and Fe). Obtained adhesion hysteresis ranged between 4×1019 and 4×1018J. At the microscale a similar setup with a nanoindenter was used and the same samples were investigated. Adhesion hysteresis measured at the microscale ranged between 8×1017 and 14×1017J. Friction was investigated via lateral force microscopy, as well as by scratch tests done with the nanoindenter. Numerical simulations based on the UFM model as well as established theories of contact mechanics studied qualitative dependencies of adhesion hysteresis on experimental parameters. Quantitative relations between adhesion hysteresis and friction were obtained through an analytic model relying on elastic and adhesive properties of the contact. The model agreed with measurements and simulations.

1.
B.
Bhushan
,
Handbook of Micro/Nanotribology
, 2nd ed. (
CRC
, Boca Raton, FL,
1999
).
2.
B.
Bhushan
,
Springer Handbook of Nanotechnology
(
Springer-Verlag
, Heidelberg,
2004
).
3.
R.
Szoszkiewicz
,
A. J.
Kulik
,
G.
Gremaud
, and
M.
Lekka
,
Appl. Phys. Lett.
86
,
123901
(
2005
).
4.
R.
Szoszkiewicz
,
A. J.
Kulik
, and
G.
Gremaud
,
Acoustical Imaging
(
Kluwer Academic
, Dordrecht Plenum, New York,
2004
).
5.
M. K.
Chaudhury
and
G. M.
Whitesides
,
Science
256
,
1539
(
1992
).
6.
G.
Luengo
,
M.
Heuberger
, and
J. N.
Israelachvili
,
J. Phys. Chem. B
104
,
7944
(
2000
).
7.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
, London,
1991
).
8.
H.
Yoshizawa
,
Y.-L.
Chen
, and
J. N.
Israelachvili
,
J. Phys. Chem.
97
,
4128
(
1993
).
9.
B.
Cappella
and
G.
Dietler
,
Surf. Sci. Rep.
34
,
1
(
1999
).
10.
R.
Szoszkiewicz
, Ph.D. thesis,
Ecole Polytechnique Fédérale de Lausanne
,
2003
.
11.
R.
Szoszkiewicz
and
E.
Riedo
,
Appl. Phys. Lett.
87
,
033105
(
2005
).
12.
P. M.
Hoffmann
,
S.
Jeffery
,
J. B.
Pethica
,
H. O.
Ozer
, and
A.
Oral
,
Phys. Rev. Lett.
87
,
265502
(
2001
).
13.
R.
Szoszkiewicz
,
B.
Bhushan
,
B. D.
Huey
,
A. J.
Kulik
, and
G.
Gremaud
,
J. Chem. Phys.
122
,
144708
(
2005
).
14.
R.
Szoszkiewicz
,
A. J.
Kulik
, and
G.
Gremaud
,
J. Chem. Phys.
122
,
134706
(
2005
).
15.
R.
Szoszkiewicz
,
B.
Huey
,
O. V.
Kolosov
,
G. A. D.
Briggs
,
G.
Gremaud
, and
A. J.
Kulik
Appl. Surf. Sci.
210
,
54
(
2003
).
16.
R. G.
Horn
,
J. N.
Israelachvili
, and
F.
Pribac
,
J. Colloid Interface Sci.
115
,
480
(
1987
).
17.
P.
Vairac
and
B.
Cretin
,
Opt. Commun.
132
,
19
(
1996
).
18.
S.
Hirsekorn
,
U.
Rabe
, and
W.
Arnold
,
Nanotechnology
8
,
57
(
1997
);
J. A.
Turner
,
S.
Hirsekorn
,
U.
Rabe
, and
W.
Arnold
,
J. Appl. Phys.
82
,
966
(
1997
);
R. W.
Stark
,
T.
Drobek
, and
W. M.
Heckl
,
Ultramicroscopy
86
,
207
(
2001
).
[PubMed]
19.
J.
Gao
,
W. D.
Luedtke
,
D.
Gourdon
,
M.
Ruths
,
J. N.
Israelachvili
, and
U.
Landman
,
J. Phys. Chem. B
108
,
3410
(
2004
).
20.
D.
Maugis
,
Contact, Adhesion and Rupture of Elastic Solids
(
Springer-Verlag
, Berlin,
1999
).
21.
F. P.
Bowden
and
D.
Tabor
,
Friction and Lubrication of Solids
(
Methuen
, London,
1967
).
22.
A.
Fogden
and
L. R.
White
,
J. Colloid Interface Sci.
138
,
414
(
1990
).
23.
A.
Cottrell
,
Introduction to the Modern Theory of Metals
(
Institute of Metals
, London,
1988
).
24.
L. D.
Landau
and
E. M.
Lifschitz
,
Theory of Elasticity
(
Akademie-Verlag GmbH
, Berlin,
1987
).
You do not currently have access to this content.