Magnetic patterning of antiferromagnetically coupled epitaxial Fe(10nm)Cr(0.7nm)Fe(10nm)(001) trilayers by irradiation with 30keVGa+ ions was studied by means of atomic force microscopy, magnetic force microscopy, and Kerr magnetometry. It was found that within a fluence range of (1.255)×1016ionscm2 a complete transition from antiferromagnetic to ferromagnetic coupling between the two Fe layers can be achieved. The magnetization reversal processes of the nonirradiated, antiferromagnetically coupled areas situated close to the irradiated areas were studied with lateral resolution. Evidence for a lateral coupling mechanism between the magnetic moments of the irradiated and nonirradiated areas was found. Special attention was paid to preserve the flatness of the irradiated samples. Depending on the fluence, topographic steps ranging from +1.5to2nm between the nonirradiated and irradiated areas were observed. At lower fluences the irradiation causes an increase of the surface height, while for higher fluences the height decreases. It was found that for the particular fluence of 2.7×1016ionscm2 no height difference between the irradiated and nonirradiated areas occurs. The results suggest that the irradiation of FeCrFe trilayers with midenergy ions is an innovative method for magnetic patterning, preserving the initial smoothness of the sample.

1.
R. L.
White
,
J. Magn. Magn. Mater.
209
,
1
(
2000
).
2.
D.
Weller
 et al.,
J. Appl. Phys.
87
,
5768
(
2000
);
C. T.
Rettner
,
S.
Anders
,
J. E. E.
Baglin
,
T.
Thomson
, and
B. D.
Terris
,
Appl. Phys. Lett.
80
,
279
(
2002
);
D.
Ravelosona
,
C.
Chappert
,
V.
Mathet
, and
H.
Bernas
,
Appl. Phys. Lett.
76
,
236
(
2000
).
3.
G. J.
Kusinski
,
K. M.
Krishnan
,
G.
Denbeaux
,
G.
Thomas
,
B. D.
Terris
, and
D.
Weller
,
Appl. Phys. Lett.
79
,
2211
(
2001
);
T.
Devolder
,
C.
Chappert
,
Y.
Chen
,
E.
Cambril
,
H.
Bernas
,
J. P.
Jamet
, and
J.
Ferré
,
Appl. Phys. Lett.
74
,
3383
(
1999
);
M.
Abes
,
J.
Benuat
,
D.
Muller
,
A.
Carvalho
,
G.
Schmerber
,
E.
Beaurepaire
,
A.
Dinia
, and
V.
Pierron-Bohnes
,
J. Appl. Phys.
96
,
7420
(
2004
).
4.
S.
Poppe
,
J.
Fassbender
, and
B.
Hillebrands
,
Europhys. Lett.
66
,
430
(
2004
);
D.
McGrouther
,
J. N.
Chapman
, and
F. W. M.
Vanhelmont
,
J. Appl. Phys.
95
,
7772
(
2004
).
5.
A.
Mougin
,
T.
Mewes
,
M.
Jung
,
D.
Engel
,
A.
Ehresmann
,
H.
Schmoranzer
,
J.
Fassbender
, and
B.
Hillebrands
,
Phys. Rev. B
63
, R
060409
(
2001
);
S.
Blomeier
,
D.
McGrouther
,
R.
O’Neill
,
S.
McVitie
,
J. N.
Chapman
,
M. C.
Weber
,
B.
Hillebrands
, and
J.
Fassbender
,
J. Magn. Magn. Mater.
290–291
,
731
(
2005
).
6.
S. O.
Demokritov
 et al.,
Phys. Rev. Lett.
90
,
097201
(
2003
);
[PubMed]
M.
Kopcewicz
,
F.
Stobiecki
,
J.
Jagielski
,
B.
Szymanski
,
M.
Schmidt
,
J.
Dubovik
, and
J.
Kalinowska
,
J. Appl. Phys.
93
,
5514
(
2003
).
7.
V. E.
Demidov
,
D. I.
Kholin
,
S. O.
Demokritov
,
B.
Hillebrands
,
F.
Wegelin
, and
J.
Marien
,
Appl. Phys. Lett.
84
,
2853
(
2004
).
8.
D. E.
Bürgler
,
S. O.
Demokritov
,
P.
Grünberg
, and
M. T.
Johnson
,
Handbook of Magnetic Materials
, edited by
K. J. H.
Buschow
(
Elsevier
, Amsterdam,
2001
), Vol.
13
.
9.
M.
Rührig
,
R.
Schäfer
,
A.
Hubert
,
R.
Mosler
,
J. A.
Wolf
,
S.
Demokritov
, and
P.
Grünberg
,
Phys. Status Solidi A
125
,
635
(
1991
).
10.
W. M.
Kaminsky
,
G. A. C.
Jones
,
N. K.
Patel
,
W. E.
Booij
,
M. G.
Blamire
,
S. M.
Gardiner
,
Y. B.
Xu
, and
J. A. C.
Bland
,
Appl. Phys. Lett.
78
,
1589
(
2001
).
11.
B. D.
Huey
and
R. M.
Langford
,
Nanotechnology
14
,
409
(
2003
).
12.
J. F.
Ziegler
,
J. F.
Biersack
, and
J. P.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
, New York,
1985
);
J. F.
Ziegler
,
Documentation of the SRIM Code
, www.srim.org
You do not currently have access to this content.