Strain relaxation in semiconductor heterostructures generally occurs through the motion of dislocations that generates misfit dislocations above a critical thickness. However, majority of the threading dislocations in GaN-related materials have no driving force to glide, and those with a driving force are kinetically impeded even at a temperature of 1000 °C. In spite of this, the strain in InxGa1xNGaN epilayers grown on c-plane sapphire substrates was observed to decrease as the InxGa1xN layer becomes thicker. We have explored the possibility of V-pit formation at terminated dislocations as the predominant relaxation mechanism in highly mismatched systems such as InxGa1xNGaN. We demonstrate that a driving force exists to nucleate V pits for strain relief. The formation of V pits was modeled through the energy balance between the strain energy in the InxGa1xN epilayer, the destruction of dislocation energy to form V pits and the strain that is relieved due to the formation of edges during the process of nucleating V pits in thermal equilibrium. V-pit formation and growth lead to strain relief as the film becomes thicker. The model illustrates many features that correlate reasonably well with experimental observations; the most significant trends are a rise in V-pit density and a decrease in strain with increasing layer thickness.

1.
F. C.
Frank
and
J. H.
van der Merwe
,
Proc. R. Soc. London, Ser. A
198
,
205
(
1949
).
2.
J. W.
Matthews
,
Epitaxial Growth B
(
Academic
, New York,
1975
).
3.
D. J.
Dunstan
,
S.
Young
, and
R. H.
Dixon
,
J. Appl. Phys.
70
,
3038
(
1991
);
D. J.
Dunstan
,
P.
Kidd
,
L. K.
Howard
, and
R. H.
Dixon
,
Appl. Phys. Lett.
59
,
3390
(
1991
).
4.
B.
Jahnen
,
M.
Albrecht
,
W.
Dorsch
,
S.
Christiansen
,
H. P.
Strunk
,
D.
Hanser
, and
R. F.
Davis
,
MRS Internet J. Nitride Semicond. Res.
3
,
39
(
1998
).
5.
S.
Srinivasan
,
L.
Geng
,
R.
Liu
,
F. A.
Ponce
,
Y.
Narukawa
, and
S.
Tanaka
,
Appl. Phys. Lett.
83
,
5187
(
2003
).
6.
J.
Tersoff
and
F. K.
LeGoues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
7.
Z.
Liliental-Weber
,
Y.
Chen
,
S.
Rummov
,
W.
Swider
, and
J.
Washburn
,
Phys. Rev. Lett.
79
,
2835
(
1997
).
8.
Y.
Chen
T.
Takeuchi
,
H.
Amano
,
I.
Asaki
,
N.
Yamada
,
Y.
Kaneko
, and
S. Y.
Wang
,
Appl. Phys. Lett.
72
,
710
(
1998
).
9.
E.
Bellet-Amalric
,
C.
Adelmann
,
E.
Sarigiannidou
,
J. L.
Rouvière
,
G.
Feuillet
,
E.
Monroy
, and
B.
Daudin
,
J. Appl. Phys.
95
,
1127
(
2004
).
10.
G.
Feuillet
,
B.
Daudin
,
F.
Widmann
,
J. L.
Rouvière
, and
M.
Arlery
,
J. Cryst. Growth
190
,
142
(
1998
).
11.
F. A.
Ponce
,
J. S.
Major
,
W. E.
Plano
, and
D. F.
Welch
,
Appl. Phys. Lett.
65
,
2302
(
1994
).
12.
S. K.
Mathis
,
A. E.
Romanov
,
L. F.
Chen
,
G. E.
Beltz
,
W.
Pompe
, and
J. S.
Speck
,
J. Cryst. Growth
231
,
371
(
2001
).
13.
X. H.
Wu
,
L. M.
Brown
,
D.
Kapolnek
,
S.
Keller
,
B.
Keller
,
S. P.
DenBaars
, and
J. S.
Speck
,
J. Appl. Phys.
80
,
3228
(
1996
).
14.
J. E.
Northrup
,
L. T.
Romano
, and
J.
Neugebauer
,
Appl. Phys. Lett.
74
,
2319
(
1999
).
15.
A. N.
Bright
,
N.
Sharma
, and
C. J.
Humphreys
,
J. Electron Microsc.
50
,
489
(
2001
).
16.
K.
Hiramatsu
 et al,
MRS Internet J. Nitride Semicond. Res.
2
,
6
(
1997
).
17.
H. K.
Cho
,
J. Y.
Lee
,
G. M.
Yang
, and
C. S.
Kim
,
Appl. Phys. Lett.
79
,
215
(
2001
).
18.
W.
Qian
,
M.
Skowronski
, and
G. R.
Rohrer
,
Mater. Res. Soc. Symp. Proc.
423
,
475
(
1996
).
19.
A.
Zubrilov
,
Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe
(
Wiley
, New York,
2001
), pp.
49
66
.
20.
A. F.
Wright
,
J. Appl. Phys.
82
,
2833
(
1997
).
21.
I.
Ho
and
G. B.
Stringfellow
,
Appl. Phys. Lett.
69
,
2701
(
1996
).
22.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
32
,
265
(
1974
).
23.
J. A.
Chisholm
and
P. D.
Bristowe
,
J. Phys.: Condens. Matter
11
,
5057
(
1999
).
24.
L.
Sugiura
,
J. Appl. Phys.
81
,
1633
(
1997
).
25.
I.
Yonenaga
,
J. Phys.: Condens. Matter
14
,
12947
(
2002
).
26.
E.
Suhir
,
J. Appl. Mech.
55
,
143
(
1988
).
27.
F. I.
Fedorov
,
Theory of Elastic Waves in Crystals
(
Plenum
, New York,
1968
).
28.
H.
Kelly
and
G. W.
Groves
,
Crystallography and Crystal Defects
(
Addison-Wesley
, Reading, MA,
1970
).
29.
R. R.
Reeber
and
K.
Wang
,
MRS Internet J. Nitride Semicond. Res.
6
,
3
(
2001
).
30.
P.
Kidd
,
P. F.
Fewster
,
N. L.
Andrew
, and
D. J.
Dunstan
,
Inst. Phys. Conf. Ser.
134
,
321
(
1993
).
31.
D. D.
Perovic
and
D. C.
Houghton
,
Inst. Phys. Conf. Ser.
146
,
117
(
1995
).
32.
T. L.
Song
,
S. J.
Chua
,
E. A.
Fitzgerald
,
P.
Chen
, and
S.
Tripathy
,
J. Vac. Sci. Technol. A
22
,
287
(
2004
).
You do not currently have access to this content.