Analytical models of the spectral response of the voltage of silicon devices have been generalized using the concept of the internal quantum efficiency of the semiconductor. This allows the extension of models used in the analysis of the internal quantum efficiency to the spectral response of the voltage. Existing models for the spectral response of the voltage that are largely employed in the surface photovoltage technique are shown to be special cases that approximate the internal quantum efficiency. A more sophisticated model of the internal quantum efficiency, the model of Isenberg, and a model that allows the analysis of the internal quantum efficiency of rear-illuminated devices have been adapted to the spectral response of the voltage. This paves the way to analyze solar cells, Schottky devices, or chemically treated silicon wafers independently of the light intensity and using front or rear illumination. The models have been validated by comparing the analysis of the spectral response of the short-circuit current and the open-circuit voltage with computer simulations for a wide range of solar cells. The model of Isenberg has been found to give in general the best prediction of the recombination parameters for both the spectral photocurrent and photovoltage. The analysis of the spectral response of the voltage can often unveil the surface recombination rate where the spectral photovoltage fails to produce any output. The measurement of rear-junction cells showed that the surface recombination rate can be predicted equally well with either method.

1.
K.
Emery
,
D.
Dunlavy
,
H.
Field
, and
T.
Moriarty
,
Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion
, Vienna, Austria, 1998 (
European Commission
, Ispra, Italy,
1998
), pp.
2298
2301
.
2.
H.
Field
,
AIP Conference Proceedings
,
462
(
AIP
, New York,
1999
), p. 629.
3.
H.
Mäckel
and
A.
Cuevas
, Prog. Photovoltaics (to be published).
4.
A. M.
Goodman
,
J. Appl. Phys.
32
,
2551
(
1961
).
5.
J.
Lagowski
,
P.
Edelman
, and
V.
Faifer
,
Recombination Lifetime Measurements in Silicon
(
American Society for Testing Materials
, Philadelphia,
1998
).
6.
A.
Quilliet
and
M. P.
Gosar
,
J. Phys. Radium
21
,
575
(
1960
).
7.
H.
Mäckel
and
A.
Cuevas
,
Sol. Energy Mater. Sol. Cells
1
,
225
(
2004
).
8.
S. C.
Choo
,
L. S.
Tan
, and
K. B.
Quek
,
Solid-State Electron.
35
,
269
(
1992
).
9.
S. C.
Choo
,
Solid-State Electron.
38
,
2085
(
1995
).
10.
J.
Lagowski
,
A. M.
Kontkiewicz
,
L.
Jastrzebski
, and
P.
Edelman
,
Appl. Phys. Lett.
63
,
2902
(
1993
).
11.
H. J.
Hovel
,
Proceedings of the 12th IEEE Photovoltaic Specialists Conference
, Baton Rouge, LA,
1976
(
IEEE
, New York, 1976), pp.
913
916
.
12.
E. D.
Stokes
and
T. L.
Chu
,
Appl. Phys. Lett.
30
,
425
(
1977
).
13.
P. A.
Basore
,
Proceedings of the 23rd IEEE Photovoltaic Specialists Conference
,
Louisville
, KY,
1993
(
IEEE
, New York, 1993), pp.
147
152
.
14.
M.
Spiegel
,
B.
Fischer
,
S.
Keller
, and
E.
Bucher
,
Proceedings of the 28th IEEE Photovoltaic Specialists Conference
,
Anchorage
, AK,
2000
(
IEEE
, Piscataway, NJ, 2000), pp.
311
314
.
15.
S.
Keller
,
M.
Spiegel
,
P.
Fath
,
G. P.
Willeke
, and
E.
Bucher
,
IEEE Trans. Electron Devices
45
,
1569
(
1998
).
16.
J.
Isenberg
,
O.
Bartels
, and
W.
Warta
,
Proceedings of the 29th IEEE Photovoltaic Specialists Conference
, New Orleans, 2002 (
IEEE
, Piscataway, NJ,
2002
), pp.
328
331
.
17.
R.
Brendel
,
M.
Hirsch
,
R.
Plieninger
, and
J. H.
Werner
,
IEEE Trans. Electron Devices
43
,
1104
(
1996
).
18.
A.
Luque
,
J.
Eguren
, and
J.
Del Alamo
,
Rev. Phys. Appl.
13
,
629
(
1978
).
19.
J. C.
Jimeno
,
A.
Cuevas
, and
A.
Luque
,
Proceedings of the 18th IEEE Photovoltaic Specialists Conference
, Las Vegas, NV, 1985 (
IEEE
, New York,
1985
), pp.
726
731
.
20.
D. R.
Lillington
and
G. F. J.
Garlick
,
Proceedings of the 18th IEEE Photovoltaic Specialists Conference
, Las Vegas, NV, 1985 (IEEE, New York,
1985
), pp.
1677
1682
.
21.
J.
Knobloch
,
A.
Aberle
,
W.
Warta
, and
B.
Voss
,
Proceedings of the Eighth European Photovoltaic Solar Energy Conference
, Florence, Italy, 1988 (
Kluwer, Dordrecht, Netherlands
, 1988), pp.
1165
1170
.
22.
J.
Lagowski
,
P.
Edelman
, and
R.
Erickson
,
Proceedings of the Sixth International Conference of Defect Recognition and Image Processing in Semiconductors
, Boulder, CO, 1995 (
IOP Publishing
, Bristol, UK, 1996), pp.
91
96
.
23.
C. L.
Chiang
and
S.
Wagner
,
IEEE Trans. Electron Devices
32
,
1722
(
1985
).
24.
A. W.
Blakers
,
A.
Wang
,
A. M.
Milne
,
J.
Zhao
, and
M. A.
Green
,
Appl. Phys. Lett.
55
,
1363
(
1989
).
25.
J.
Zhao
,
A.
Wang
, and
M. A.
Green
,
Proceedings of the 21st IEEE Photovoltaic Specialists Conference
, Kissimmee, FL, 1990 (
IEEE, New York
,
1990
), pp.
333
335
.
26.
S. W.
Glunz
,
J.
Knobloch
,
C.
Hebling
, and
W.
Wettling
,
Proceedings of the 26th IEEE Photovoltaic Specialists Conference
, Anaheim, CA,
1997
(
IEEE, New York
,
1997
), pp.
231
234
.
27.
O.
Schultz
,
S.
Riepe
, and
S. W.
Glunz
,
Solid State Phenom.
95–96
,
235
(
2004
).
28.
A.
Cuevas
,
C.
Samundsett
,
M. J.
Kerr
,
D. H.
Macdonald
,
H.
Mäckel
, and
P. P.
Altermatt
,
Proceedings of Third World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, 2003 (
Arisumi Printing Inc.
, Japan,
2003
), pp.
963
966
.
29.
J.
Schmidt
,
Appl. Phys. Lett.
82
,
2178
(
2003
).
30.
P. A.
Basore
and
D. A.
Clugston
,
Proceedings of the 25th IEEE Photovoltaic Specialists Conference
, Washington, DC, 1996 (
IEEE, New York
,
1996
), pp.
377
381
.
31.
H.
Mäckel
, Ph.D. Thesis, Department of Engineering,
Australian National University
, Australia (
2005
).
32.
S. W.
Glunz
 et al.,
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, 2003 (
Arisumi Printing Inc.
,
2003
), pp.
1332
1335
.
You do not currently have access to this content.