A systematic study of the shift and linewidth of the Raman peak at of anatase nanopowders, produced by a flame aerosol technique, is here presented. The analysis was performed as a function of the crystal domain size and of the degree of oxidation. In the nanopowders, a clear contribution of the stoichiometry defects to the peak shift was evidenced, while the peak width seems to be less affected by the oxygen content. The Raman peak behavior due to size reduction has been interpreted in the framework of a phonon quantum confinement model. A critical review of the different approaches to this model, adopted in the literature to explain the behavior of the anatase Raman spectra as a function of the domain size, is presented. In particular, the hypothesis of a three-dimensional isotropic model for the dispersion relations is discussed. This analysis evidences general limits in the application of the phonon confinement model to the study and characterization of nanoparticles and nanostructured materials, showing how an uncritical use of the confinement theory can yield distorted results.
Skip Nav Destination
Article navigation
1 October 2005
Research Article|
October 05 2005
Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry
A. Li Bassi;
A. Li Bassi
a)
Istituto Nazionale per la Fisica della Materia (INFM)
, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milano, Italy and Centro per I’Ingegneria dei Materiali e delle Superfici Nanostrutturati (NEMAS)
, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
Search for other works by this author on:
D. Cattaneo;
D. Cattaneo
Istituto Nazionale per la Fisica della Materia (INFM)
, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milano, Italy and Centro per I’Ingegneria dei Materiali e delle Superfici Nanostrutturati (NEMAS)
, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
Search for other works by this author on:
V. Russo;
V. Russo
Istituto Nazionale per la Fisica della Materia (INFM)
, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milano, Italy and Centro per I’Ingegneria dei Materiali e delle Superfici Nanostrutturati (NEMAS)
, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
Search for other works by this author on:
C. E. Bottani;
C. E. Bottani
Istituto Nazionale per la Fisica della Materia (INFM)
, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milano, Italy and Centro per I’Ingegneria dei Materiali e delle Superfici Nanostrutturati (NEMAS)
, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy
Search for other works by this author on:
E. Barborini;
E. Barborini
Istituto Nazionale per la Fisica della Materia (INFM)-Dipartimento di Fisica,
Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy and Centro Interdisciplinare Materiali ed Interfacce Nanostrutturati (CIMAINA), Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy
Search for other works by this author on:
T. Mazza;
T. Mazza
Istituto Nazionale per la Fisica della Materia (INFM)-Dipartimento di Fisica,
Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy and Centro Interdisciplinare Materiali ed Interfacce Nanostrutturati (CIMAINA), Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy
Search for other works by this author on:
P. Piseri;
P. Piseri
Istituto Nazionale per la Fisica della Materia (INFM)-Dipartimento di Fisica,
Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy and Centro Interdisciplinare Materiali ed Interfacce Nanostrutturati (CIMAINA), Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy
Search for other works by this author on:
P. Milani;
P. Milani
Istituto Nazionale per la Fisica della Materia (INFM)-Dipartimento di Fisica,
Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy and Centro Interdisciplinare Materiali ed Interfacce Nanostrutturati (CIMAINA), Universita’ di Milano
, Via Celoria 16, I-20133 Milano, Italy
Search for other works by this author on:
F. O. Ernst;
F. O. Ernst
Particle Technology Laboratory,
Institute of Process Engineering
, Department of Mechanical and Process Engineering, ETH Zürich Sonneggstrasse 3, ML2 F13, CH-8092 Zürich, Switzerland
Search for other works by this author on:
K. Wegner;
K. Wegner
Particle Technology Laboratory,
Institute of Process Engineering
, Department of Mechanical and Process Engineering, ETH Zürich Sonneggstrasse 3, ML2 F13, CH-8092 Zürich, Switzerland
Search for other works by this author on:
S. E. Pratsinis
S. E. Pratsinis
Particle Technology Laboratory,
Institute of Process Engineering
, Department of Mechanical and Process Engineering, ETH Zürich Sonneggstrasse 3, ML2 F13, CH-8092 Zürich, Switzerland
Search for other works by this author on:
a)
Electronic mail: [email protected]
J. Appl. Phys. 98, 074305 (2005)
Article history
Received:
May 23 2005
Accepted:
August 16 2005
Citation
A. Li Bassi, D. Cattaneo, V. Russo, C. E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F. O. Ernst, K. Wegner, S. E. Pratsinis; Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. 1 October 2005; 98 (7): 074305. https://doi.org/10.1063/1.2061894
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Distinct deformation mechanisms of silicate glasses under nanoindentation: The critical role of structure
Ziming Yan, Ranran Lu, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Related Content
Deposition of an organic–inorganic hybrid material onto carbon fibers via the introduction of furfuryl alcohol into the atomic layer deposition process of titania and subsequent pyrolysis
J. Vac. Sci. Technol. A (November 2016)
Phase selection and transition in Hf-rich hafnia-titania nanolaminates
J. Appl. Phys. (June 2011)
Modulation of mixed-phase titania photoluminescence by oxygen adsorption
Appl. Phys. Lett. (July 2014)
Mechanisms of titania nanoparticle mediated growth of turbostratic carbon nanotubes and nanofibers
J. Appl. Phys. (July 2017)
Synthesis and hydrophilic properties of Mo doped TiO2 thin films
J. Appl. Phys. (June 2014)