The motion of a single planar 180° domain wall was studied in single-crystalline gadolinium molybdate, Gd2(MoO4)3. The switching current and the instantaneous wall positions were recorded using polarized light in an optical microscope and subsequent image processing. A pronounced deaging (wake-up) effect is observed represented by an increase of domain-wall shift during cyclic switching at constant voltage amplitude. The experimental data are compared to computer simulations taking into account the kinetic imprint effect under ac cycling. The latter is the change of the spatial distribution of the internal bias field during cycling. It is shown that deaging (wake-up) arises for aged (screened) initial states. After long enough cycling, the spatial distribution of the internal bias field becomes steady state and the wall motion becomes reproducible in all its details. The final distribution of the internal bias field does not depend on the initial state of the sample. The activation energies for deaging and aging are equal within the experimental uncertainty and thus very likely stem from the same micromechanism.

1.
R. L.
Byer
,
J. Nonlinear Opt. Phys. Mater.
6
,
549
(
1997
).
2.
L. E.
Myers
,
R. C.
Eckardt
,
M. M.
Fejer
,
R. L.
Byer
, and
W. R.
Bosenberg
,
Opt. Lett.
21
,
591
(
1996
).
3.
G. H.
Jonker
,
J. Am. Ceram. Soc.
55
,
57
(
1972
).
4.
M.
Grossmann
,
O.
Lohse
,
D.
Bolten
,
U.
Boettger
,
T.
Schneller
, and
R.
Waser
,
J. Appl. Phys.
92
,
2680
(
2002
).
5.
M.
Grossmann
,
O.
Lohse
,
D.
Bolten
,
U.
Boettger
, and
R.
Waser
,
J. Appl. Phys.
92
,
2688
(
2002
).
6.
H.-G.
Unruh
and
H. E.
Müser
,
Z. Angew. Math. Phys.
14
,
121
(
1962
).
7.
D. C.
Lupascu
,
J.
Nuffer
, and
J.
Rödel
,
Ferroelectrics
222
,
249
(
1999
).
8.
V. Ya.
Shur
in
Ferroelectric Thin Films: Synthesis and Basic Properties
, edited by
C. P.
de Araujo
,
J. F.
Scott
, and
G. W.
Taylor
(
Gordon and Breach
, Amsterdam
1996
), pp.
153
192
.
9.
V. Ya.
Shur
,
Phase Transitions
65
,
49
(
1998
).
10.
V. Ya.
Shur
,
E. L.
Rumyantsev
,
E. V.
Nikolaeva
,
E. I.
Shishkin
, and
I. S.
Baturin
,
J. Appl. Phys.
90
,
6312
(
2001
).
11.
V. Ya.
Shur
,
E. L.
Rumyantsev
,
E. V.
Nikolaeva
,
E. I.
Shishkin
, and
I. S.
Baturin
,
Phys. Solid State
44
,
2145
(
2002
).
12.
V. Ya.
Shur
,
E. L.
Rumyantsev
,
E. V.
Nikolaeva
,
E. I.
Shishkin
,
I. S.
Baturin
,
M.
Ozgul
, and
C. A.
Randall
,
Integr. Ferroelectr.
33
,
117
(
2001
).
13.
V. Ya.
Shur
,
E. L.
Rumyantsev
,
V. P.
Kuminov
,
A. L.
Subbotin
, and
E. V.
Nikolaeva
,
Phys. Solid State
41
,
112
(
1999
).
14.
V. Ya.
Shur
,
E. V.
Nikolaeva
,
E. L.
Rumyantsev
,
E. I.
Shishkin
,
A. L.
Subbotin
, and
V. L.
Kozhevnikov
,
Ferroelectrics
222
,
323
(
1999
).
15.
R. B.
Flippen
,
J. Appl. Phys.
46
,
1068
(
1975
).
16.
V. Ya.
Shur
,
A. L.
Gruverman
,
V. P.
Kuminov
, and
N. A.
Tonkachyova
,
Ferroelectrics
111
,
197
(
1990
).
17.
V. Ya.
Shur
,
Yu. A.
Popov
, and
N. V.
Korovina
,
Sov. Phys. Solid State
26
,
471
(
1984
).
18.
D. C.
Lupascu
,
Y.
Genenko
, and
N.
Balke
,
J. Am. Ceram. Soc.
(in print).
20.
A. Yu.
Bunkin
and
M. B.
Nishnevitch
,
J. Cryst. Growth
156
,
454
(
1995
).
21.
V. M.
Fridkin
,
Ferroelectric Semiconductors
(
Consultants Bureau
, New York, 1980).
22.
M.
Dawber
,
L. J.
Sinnamon
,
J. F.
Scott
, and
J. M.
Gregg
,
Ferroelectrics
268
,
35
(
2002
).
23.
A. M.
Bratkovsky
and
A. P.
Levanyuk
,
Phys. Rev. Lett.
84
,
3177
(
2000
).
24.
U.
Robels
and
G.
Arlt
,
J. Appl. Phys.
73
,
3454
(
1993
).
25.
P. V.
Lambeck
and
G. H.
Jonker
,
J. Phys. Chem. Solids
47
,
453
(
1986
).
26.
A. K.
Tagantsev
,
I.
Stolichnov
,
E. L.
Colla
, and
N.
Setter
,
J. Appl. Phys.
90
,
1387
(
2001
).
27.
V. A.
Meleshina
,
V. L.
Indenbom
,
Kh. S.
Bagdasarov
, and
T. M.
Polkhovskaya
,
Kristallografiya
18
,
1218
(
1973
).
You do not currently have access to this content.