Silicon wafers were preamorphized with 60 keV Ge+ or 70 keV Si+ at a dose of 1×1015atomscm2. F+ was then implanted into some samples at 6 keV at doses ranging from 1×1014 to 5×1015atomscm2, followed by B+11 implants at 500 eV, 1×1015atomscm2. Secondary-ion-mass spectrometry confirmed that fluorine enhances boron motion in germanium-preamorphized materials in the absence of annealing. The magnitude of boron diffusion scales with increasing fluorine dose. Boron motion in as-implanted samples occurs when fluorine is concentrated above 1×1020atomscm3. Boron atoms are mobile in as-implanted, amorphous material at concentrations up to 1×1019atomscm3. Fluorine directly influences boron motion only prior to activation annealing. During the solid-phase epitaxial regrowth process, fluorine does not directly influence boron motion, it simply alters the recrystallization rate of the silicon substrate. Boron atoms can diffuse in germanium-amorphized silicon during recrystallization at elevated temperatures without the assistance of additional dopants. Mobile boron concentrations up to 1×1020atomscm3 are observed during annealing of germanium-preamorphized wafers.

1.
D. F.
Downey
,
J. W.
Chow
,
E.
Ishida
, and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
1263
(
1998
).
2.
K.
Ohyu
,
T.
Itoga
, and
N.
Natsuaki
,
Jpn. J. Appl. Phys.
29
(3),
457
(
1990
).
3.
L. S.
Robertson
,
P. N.
Warnes
,
K. S.
Jones
,
S. K.
Earles
,
M. E.
Law
,
D. F.
Downey
,
S.
Falk
, and
J.
Liu
,
Mater. Res. Soc. Symp. Proc.
610
,
B4
2
(
2001
).
4.
R.
Duffy
 et al,
Appl. Phys. Lett.
84
,
4283
(
2004
).
5.
J. M.
Jacques
 et al,
Mater. Res. Soc. Symp. Proc.
810
,
C10
3
(
2004
).
6.
D.
Lecrosnier
,
J.
Paugam
, and
J.
Gallou
,
Appl. Phys. Lett.
30
,
323
(
1977
).
7.
R. G.
Wilson
,
J. Appl. Phys.
54
,
6879
(
1983
).
8.
A. E.
Michel
,
R. H.
Kastl
,
S. R.
Mader
,
B. J.
Masters
, and
J. A.
Gardner
,
Appl. Phys. Lett.
44
,
404
(
1984
).
9.
T. O.
Sedgwick
,
A. E.
Michel
,
V. R.
Deline
,
S. A.
Cohen
, and
J. B.
Lasky
,
J. Appl. Phys.
63
,
1452
(
1988
).
10.
A. E.
Michel
,
M.
Numan
, and
W. K.
Chu
,
Appl. Phys. Lett.
53
,
851
(
1988
).
11.
M.
Kase
,
M.
Kimura
,
H.
Mori
, and
T.
Ogawa
,
Appl. Phys. Lett.
56
,
1231
(
1990
).
12.
J. M.
Jacques
,
L. S.
Robertson
,
K. S.
Jones
,
M. E.
Law
,
M.
Rendon
, and
J.
Bennett
,
Appl. Phys. Lett.
82
,
3469
(
2003
).
13.
M. H.
Clark
,
K. S.
Jones
,
T. E.
Haynes
,
C. J.
Barbour
,
K. G.
Minor
, and
E.
Andideh
,
Appl. Phys. Lett.
80
,
4163
(
2002
).
14.
S.
Roorda
,
J. S.
Custer
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
A.
Polman
, and
F.
Spaepen
,
Nucl. Instrum. Methods Phys. Res. B
59∕60
,
344
(
1991
).
15.
T.
Gebel
,
M.
Voelskow
,
W.
Skorupa
,
G.
Mannino
,
V.
Privitera
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Nucl. Instrum. Methods Phys. Res. B
186
,
287
(
2002
).
16.
H.
Tsukamoto
,
Solid-State Electron.
43
,
487
(
1999
).
17.
G.
Fortunato
 et al,
Nucl. Instrum. Methods Phys. Res. B
186
,
401
(
2002
).
18.
M. H.
Juang
,
F. S.
Wan
,
H. W.
Liu
,
K. L.
Cheng
, and
H. C.
Cheng
,
J. Appl. Phys.
71
,
3628
(
1992
).
19.
S.
Baek
,
T.
Jang
, and
H.
Hwang
,
Appl. Phys. Lett.
80
,
2272
(
2002
).
20.
M. H.
Juang
and
H. C.
Cheng
,
Appl. Phys. Lett.
60
,
2092
(
1992
).
21.
V.
Privitera
,
C.
Spinella
,
G.
Fortunato
, and
L.
Mariucci
,
Appl. Phys. Lett.
77
,
552
(
2000
).
22.
E.
Napolitani
,
A.
Coati
,
D.
De Salvador
,
A.
Carnera
,
S.
Mirabella
,
S.
Scalese
, and
F.
Priolo
,
Appl. Phys. Lett.
79
,
4145
(
2001
).
23.
J. M.
Jacques
,
L. S.
Robertson
,
M. E.
Law
,
K. S.
Jones
,
M. J.
Rendon
, and
J.
Bennett
,
Mater. Res. Soc. Symp. Proc.
717
,
C
4
6
1
(
2002
).
24.
E.
Napolitani
,
A.
Carnera
,
V.
Privitera
, and
F.
Priolo
,
Mater. Sci. Semicond. Process.
4
,
55
(
2001
).
25.
E.
Napolitani
,
D.
De Salvador
,
R.
Storti
,
A.
Carnera
,
S.
Mirabella
, and
F.
Priolo
,
Phys. Rev. Lett.
93
,
055901
(
2004
).
26.
J. F.
Ziegler
and
J. P.
Biersack
,
The Stopping and Range of Ions in Matter (SRIM-2000.4)
(
IBM Co.
, Maryland,
1999
).
27.
I.
Suni
,
G.
Goltz
,
M. G.
Grimaldi
,
M. A.
Nicolet
, and
S. S.
Lau
,
Appl. Phys. Lett.
40
,
269
(
1982
).
28.
I.
Suni
,
G.
Goltz
,
M. A.
Nicolet
, and
S. S.
Lau
,
Thin Solid Films
93
,
171
(
1982
).
29.
I.
Suni
,
U.
Shreter
,
M. A.
Nicolet
, and
J. E.
Baker
,
J. Appl. Phys.
56
,
273
(
1984
).
30.
J.
Faure
,
A.
Claverie
,
L.
Laanab
, and
P.
Bonhomme
,
Mater. Sci. Eng., B
22
,
128
(
1994
).
31.
I.
Suni
,
U.
Shreter
,
M. A.
Nicolet
, and
J. E.
Baker
,
J. Appl. Phys.
56
,
273
(
1984
).
32.
W.
Frentrup
and
A.
Mertens
,
Physica B
208∕209
,
389
(
1995
).
33.
G.
Hobler
,
A.
Simionescu
,
L.
Palmetshofer
,
C.
Tian
, and
G.
Stingeder
,
J. Appl. Phys.
77
,
3697
(
1995
).
34.
G.
Hobler
and
G.
Otto
,
Mater. Sci. Semicond. Process.
6
,
1
(
2003
).
35.
P. A.
Thomas
,
M. H.
Brodsky
,
D.
Kaplan
, and
D.
Lepine
,
Phys. Rev. B
18
,
3059
(
1978
).
36.
D.
Kalpan
,
N.
Sol
,
G.
Velasco
, and
P.
Thomas
,
Appl. Phys. Lett.
33
,
440
(
1978
).
37.
M. H.
Brodsky
and
D.
Kaplan
,
J. Non-Cryst. Solids
32
,
431
(
1979
).
38.
Ion Implantation Science and Technology
, 2004 ed., edited by
J. F.
Ziegler
(
Ion Implantation Technology Co.
, New York,
2004
), pp.
5
8
5
10
.
39.
A. C.
Ajmera
,
G. A.
Rozgonyi
, and
R. B.
Fair
,
Appl. Phys. Lett.
52
,
813
(
1998
).
40.
J.
Hattendorf
,
W. D.
Zeitz
,
W.
Schroder
, and
N. V.
Abrosimov
,
Physica B
340–342
,
858
(
2003
).
41.
C.
Chatillon
,
M.
Allibert
, and
A.
Pattoret
,
C. R. Seances Acad. Sci., Ser. C
280
,
1505
(
1975
).
42.
A. G.
Gaydon
,
Dissociation Energies and Spectra of Diatomic Molecules
, 3rd ed. (
Chapman & Hall
, London,
1968
).
43.
G.
Verhaegen
,
F. E.
Stafford
, and
J.
Drowart
,
J. Chem. Phys.
40
,
1622
(
1964
).
You do not currently have access to this content.