Nanoisland gold films, deposited by vacuum evaporation of gold onto Si(100) substrates, were irradiated with 1.5MeVAu2+ ions up to a fluence of 5×1014ionscm2 and at incidence angles up to 60° with respect to the surface normal. The sputtered particles were collected on carbon-coated grids (catcher grid) during ion irradiation and were analyzed with transmission electron microscopy and Rutherford backscattering spectrometry. The average sputtered particle size and the areal coverage are determined from transmission electron microscopy measurements, whereas the amount of gold on the substrate is found by Rutherford backscattering spectrometry. The size distributions of larger particles (number of atoms/particle, n1000) show an inverse power law with an exponent of 1 in broad agreement with a molecular-dynamics simulation of ion impact on cluster targets.

1.
R. E.
Honig
,
J. Appl. Phys.
29
,
549
(
1958
).
2.
W. O.
Hofer
, in
Sputtering by Particle Bombardment III
, edited by
R.
Behrisch
and
K.
Wittmaack
(
Springer
, Berlin,
1991
), p.
15
.
3.
K.
Nordlund
,
J.
Keinonen
,
M.
Ghaly
, and
R. S.
Averback
,
Nucl. Instrum. Methods Phys. Res. B
148
,
74
(
1999
).
4.
A.
Wucher
and
M.
Wahl
,
Nucl. Instrum. Methods Phys. Res. B
115
,
581
(
1996
).
5.
C. T.
Reimann
,
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
43
,
351
(
1993
).
6.
S. R.
Coon
,
W. F.
Calaway
,
J. W.
Burnett
,
M. J.
Pellin
,
D. M.
Gruen
,
D. R.
Spiegel
, and
J. M.
White
,
Surf. Sci.
259
,
275
(
1991
).
7.
A.
Wucher
,
M.
Wahl
, and
H.
Oechsner
,
Nucl. Instrum. Methods Phys. Res. B
82
,
337
(
1993
).
8.
L. E.
Rehn
,
R. C.
Birtcher
,
S. E.
Donnelly
,
P. M.
Baldo
, and
L.
Funk
,
Phys. Rev. Lett.
87
,
207601
(
2000
).
9.
I. S.
Bitensky
and
E. S.
Parilis
,
Nucl. Instrum. Methods Phys. Res. B
21
,
26
(
1987
).
10.
R.
Kissel
and
H. M.
Urbassek
,
Nucl. Instrum. Methods Phys. Res. B
180
,
293
(
2001
).
11.
M.
Wahl
and
A.
Wucher
,
Nucl. Instrum. Methods Phys. Res. B
94
,
36
(
1994
).
12.
C.
Staudt
,
R.
Heinrich
, and
A.
Wucher
,
Nucl. Instrum. Methods Phys. Res. B
164–165
,
677
(
2000
).
13.
I.
Baranov
 et al,
Nucl. Instrum. Methods Phys. Res. B
193
,
809
(
2002
).
14.
B.
Satpati
,
D. K.
Goswami
,
S.
Roy
,
T.
Som
,
B. N.
Dev
, and
P. V.
Satyam
,
Nucl. Instrum. Methods Phys. Res. B
212
,
332
(
2003
).
15.
S. K.
Ghose
,
G.
Kuri
,
A. K.
Das
,
B.
Rout
,
D. P.
Mahapatra
, and
B. N.
Dev
,
Nucl. Instrum. Methods Phys. Res. B
156
,
125
(
1999
).
16.
P. V.
Satyam
 et al,
J. Appl. Phys.
93
,
6399
(
2003
).
17.
B.
Satpati
,
D. K.
Goswami
,
U. D.
Vaishnav
,
T.
Som
,
B. N.
Dev
, and
P. V.
Satyam
,
Nucl. Instrum. Methods Phys. Res. B
212
,
157
(
2003
).
18.
B.
Satpati
,
P. V.
Satyam
,
T.
Som
, and
B. N.
Dev
,
J. Appl. Phys.
96
,
5212
(
2004
).
19.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
9
,
344
(
1985
).
21.
B.
Satpati
,
P. V.
Satyam
,
T.
Som
, and
B. N.
Dev
,
Appl. Phys. A: Mater. Sci. Process.
79
,
447
(
2004
).
23.
E. M.
Bringa
and
R. E.
Johnson
,
Nucl. Instrum. Methods Phys. Res. B
152
,
267
(
1999
);
E. M.
Bringa
and
R. E.
Johnson
,
Nucl. Instrum. Methods Phys. Res. B
193
,
365
(
2002
).
24.
B.
Satpati
and
B. N.
Dev
,
Nanotechnology
16
,
572
(
2005
).
You do not currently have access to this content.