Phonon scattering in carbon nanotube field-effect transistors (CNTFETs) is treated using the nonequilibrium Green’s function formalism with the self-consistent Born approximation. The treatment simultaneously captures the essential physics of phonon scattering and important quantum effects. For a one-dimensional channel, it is computationally as efficient as and physically more rigorous than the so-called “Büttiker probe” approach [Phys. Rev. Lett.57, 1761 (1986)], which has been widely used in mesoscopic physics. The non-self-consistent simulation results confirm that the short mean-free-path optical phonon (OP) scattering, though expected to dominate even in a short channel CNTFET, essentially has no direct effect on the dc on current under modest gate biases. The self-consistent simulation results indicate that OP scattering, however, can have an indirect effect on the on current through self-consistent electrostatics. Using a high-κ gate insulator suppresses the indirect effect and leads to a dc on current closer to the ballistic limit. The indirect effect in a CNT Schottky barrier FET can be more important than that in a metal-oxide semiconductor FET.

1.
P.
Avouris
,
J.
Appenzeller
,
R.
Martel
, and
S. J.
Wind
,
Proc. IEEE
91
,
1772
(
2003
);
P. L.
McEuen
,
M. S.
Fuhrer
, and
H. K.
Park
,
IEEE Trans. Nanotechnol.
1
,
78
(
2002
).
2.
Z.
Yao
,
C. L.
Kane
, and
C.
Dekker
,
Phys. Rev. Lett.
84
,
2941
(
2000
).
3.
A.
Javey
,
J.
Guo
,
M.
Paulsson
,
Q.
Wang
,
D.
Mann
,
M.
Lundstrom
, and
H.
Dai
,
Phys. Rev. Lett.
92
,
106804
(
2004
).
4.
J. Y.
Park
,
Nano Lett.
4
,
517
(
2004
).
5.
A.
Javey
,
J.
Guo
,
Q.
Wang
, and
H.
Dai
,
Nature (London)
424
,
654
(
2003
);
S. J.
Wind
,
J.
Appenzeller
, and
P.
Avouris
,
Phys. Rev. Lett.
91
,
058301
(
2003
).
[PubMed]
6.
Y.
Taur
and
T.
Ning
,
Fundamentals of Modern VLSI Devices
(
Cambridge University Press
, London, UK,
1998
).
7.
A.
Javey
,
J.
Guo
,
D. B.
Farmer
,
Q.
Wang
,
E.
Yenilmez
,
R. G.
Gordon
,
M.
Lundstrom
, and
H.
Dai
,
Nano Lett.
4
,
1319
(
2004
).
8.
R. V.
Seidel
 et al.,
Nano Lett.
5
,
147
(
2005
).
9.
J.
Guo
and
M.
Lundstrom
,
Appl. Phys. Lett.
86
,
193103
(
2005
).
10.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
, Cambridge, UK,
1995
).
11.
R.
Venugopal
,
M.
Paulsson
,
S.
Goasguen
,
S.
Datta
, and
H.
Lundstrom
,
J. Appl. Phys.
93
,
5613
(
2003
).
12.
J.
Appenzeller
,
J.
Knoch
,
V.
Derycke
,
R.
Martel
,
S.
Wind
, and
Ph.
Avouris
,
Phys. Rev. Lett.
89
,
126801
(
2002
);
[PubMed]
S.
Heinze
,
J.
Tersoff
,
R.
Martel
,
V.
Derycke
,
J.
Appenzeller
, and
Ph.
Avouris
,
Phys. Rev. Lett.
89
,
106801
(
2002
).
[PubMed]
13.
J.
Guo
,
S.
Datta
,
M.
Lundstrom
, and
M. P.
Anantram
,
Int. J. Multiscale Comp. Eng.
2
,
257
(
2004
).
14.
F.
Leonard
and
J.
Tersoff
,
Phys. Rev. Lett.
84
,
4693
(
2000
).
15.
S.
Ramo
,
J. R.
Whinnery
, and
T.
Van Duzer
,
Fields and Waves in Communication Electronics
, 3rd ed. (
Wiley
, New York, NY,
1993
).
16.
V.
Perebeinos
,
J.
Tersoff
, and
P.
Avouris
,
Phys. Rev. Lett.
94
,
027402
(
2005
).
17.
G. D.
Mahan
,
Phys. Rev. B
68
,
125409
(
2003
).
18.
G.
Pennington
and
N.
Goldsman
,
Phys. Rev. B
68
,
045426
(
2003
).
19.
E.
Pop
,
D.
Mann
,
J.
Cao
,
Q.
Wang
,
K.
Goodson
, and
H.
Dai
, e-print cond-mat/0506122.
20.
A.
Svizhenko
and
M. P.
Anantram
,
IEEE Trans. Electron Devices
50
,
1459
(
2003
).
21.
W. J.
Liang
,
M.
Bockrath
,
D.
Bozovic
,
J. H.
Hafner
,
M.
Tinkham
, and
H.
Park
,
Nature (London)
411
,
665
(
2001
).
22.
J.
Guo
,
S.
Datta
, and
M.
Lundstrom
,
IEEE Trans. Electron Devices
51
,
172
(
2004
).
23.
J.
Chen
,
C.
Klinke
,
A.
Afzali
, and
Ph.
Avouris
,
Appl. Phys. Lett.
86
,
123108
(
2005
).
24.
M.
Lundstrom
and
Z. B.
Ren
,
IEEE Trans. Electron Devices
49
,
133
(
2002
).
You do not currently have access to this content.