In this paper we present an experimental and theoretical study of the thermoreflectance response as a function of the probe wavelength for layered microelectronics structures. The investigated sample consists of a polycrystalline silicon conducting track grown on a SiO2-coated Si substrate. Thermoreflectance measurements were carried out in the wavelength range from 450to750nm with the track biased in modulated regime. An oscillating pattern is observed in the spectral region where the upper layer is transparent. Such oscillations are due to the interference resulting from the multiple reflections at the interfaces. Using a thermo-optical model, we show that the optical constants (n and k) of the materials, which are wavelength dependent, as well as their temperature derivatives (dndT and dkdT), strongly influence the thermoreflectance signal. The optical thicknesses of the layers, mainly determined by the real part of the refractive indices, define the period of oscillation. On the other hand, the imaginary part of the refractive indices establishes the cutoff wavelength of the oscillations. Below this cutoff wavelength, the probe light does not penetrate the material and the upper-surface reflectance dominates the signal.

1.
J. A.
Batista
,
A. M.
Mansanares
,
E. C.
da Silva
, and
D.
Fournier
,
J. Appl. Phys.
82
,
423
(
1997
).
2.
L. R.
de Freitas
,
E. C.
da Silva
,
A. M.
Mansanares
,
M. B. C.
Pimentel
,
S.
Eleutério Filho
, and
J. A.
Batista
,
J. Appl. Phys.
97
,
104510
(
2005
).
3.
P. W.
Epperlein
,
Jpn. J. Appl. Phys., Part 1
32
,
5514
(
1993
).
4.
A. M.
Mansanares
,
D.
Fournier
, and
A. C.
Boccara
,
Electron. Lett.
29
,
2045
(
1993
).
5.
A. M.
Mansanares
,
J. P.
Roger
,
D.
Fournier
, and
A. C.
Boccara
,
Appl. Phys. Lett.
64
,
4
(
1994
).
6.
L. C. O.
Dacal
,
A. M.
Mansanares
, and
E. C.
da Silva
,
J. Appl. Phys.
84
,
3491
(
1998
).
7.
A.
Mandelis
,
A.
Williams
, and
E. K. M.
Siu
,
J. Appl. Phys.
63
,
92
(
1988
).
8.
J. A.
Batista
,
D.
Takeuti
,
A. M.
Mansanares
, and
E. C.
da Silva
,
Anal. Sci.
17
,
S73
(
2001
).
9.
D.
Dietzel
,
H.
Roecken
,
C.
Crell
,
B. K.
Bein
, and
J.
Pelzl
,
Anal. Sci.
17
,
S70
(
2001
).
10.
P.
Voigt
,
J.
Hartmann
, and
M.
Reichling
,
J. Appl. Phys.
80
,
2013
(
1996
).
11.
S.
Grauby
,
G.
Tessier
,
V.
Rachet
,
S.
Hole
, and
D.
Fournier
,
Anal. Sci.
17
,
S67
(
2001
).
12.
J. A.
Batista
,
A. M.
Mansanares
,
E. C.
da Silva
,
C. C.
Vaz
, and
L. C. M.
Miranda
,
J. Appl. Phys.
88
,
5079
(
2000
).
13.
A. M.
Mansanares
, in
Semiconductors and Electronic Materials
,
Progress in Photothermal and Photoacoustic Science and Technology Series
Vol.
IV
, edited by
A.
Mandelis
and
P.
Hess
(
SPIE Optical Engineering
, Bellingham,
2000
), Ch. 3, pp.
75
110
.
14.
S.
Grauby
,
B. C.
Forget
,
S.
Holé
, and
D.
Fournier
,
Rev. Sci. Instrum.
70
,
3603
(
1999
).
15.
G.
Tessier
,
S.
Holé
, and
D.
Fournier
,
Appl. Phys. Lett.
78
,
2267
(
2001
).
16.
G.
Tessier
,
G.
Jerosolimski
,
S.
Hole
,
D.
Fournier
, and
C.
Filloy
,
Rev. Sci. Instrum.
74
,
495
(
2003
).
17.
B.
Batz
, in
Modulation Techniques
,
Semiconductors and Semimetals Series
Vol.
9
, edited by
R. K.
Willardson
and
Albert C.
Beer
(
Academic
, New York,
1972
).
18.
G.
Busse
,
D.
Wu
, and
W.
Karpen
,
J. Appl. Phys.
71
,
3962
(
1992
).
19.
G. E.
Jellison
, Jr.
and
F. A.
Modine
,
Phys. Rev. B
27
,
7466
(
1983
).
20.
G. E.
Jellison
, Jr.
and
F. A.
Modine
,
J. Appl. Phys.
76
,
3758
(
1994
).
21.
A.
Borghesi
,
P.
Bottazzi
,
G.
Guizzetti
,
L.
Nosenzo
, and
A.
Stella
,
Solid State Commun.
60
,
807
(
1986
).
22.

Ellipsometric measurements made on polycrystalline silicon layer on Si substrate.

23.

Ellipsometric measurements made on SiO2 layer on Si substrate.

24.
J. R.
Reitz
,
F. J.
Milford
, and
R. W.
Christy
,
Foundations of Electromagnetic Theory
, 3rd ed. (
Addison-Wesley
, Massachusetts,
1980
).
25.
T.
Toyoda
and
M.
Yabe
,
J. Phys. D
16
,
L97
(
1983
).
26.
You do not currently have access to this content.