Stoney's equation and subsequent modifications and some approximations are widely used to evaluate the macrostress within a film on a substrate, though some of these solutions are only applicable for thin films. The purpose of this paper is to review the considerable efforts devoted to the analysis of residual stresses in a single-layer film in the last century and recent years and to estimate the errors involved in using these formulas. The following are some of the important results that can be obtained. (1) The exact solution for the residual stress can be expressed in terms of Stoney's equation [Proc. R. Soc. LondonA82, 172 (1909)] and a correction factor, (1+Ση3)(1+η), where Σ,η are the ratios of the elastic modulus and the thickness of the film to those of the substrate, respectively. (2) When the thickness ratio of the film and the substrate is less than 0.1, Stoney's equation and Röll's approximation [J. Appl. Phys.47, 3224 (1976)] do not cause serious errors. (3) The approximation proposed by Vilms and Kerps [J. Appl. Phys.53, 1536 (1982)] is an improved modification for Stoney's equation and can be applicable when η0.3. (4) The approximations proposed by Brenner and Senderoff [J. Res. Natl. Bur. Stand.42, 105 (1949)] and Teixeira [Thin Solid Films392, 276 (2001)] can lead to serious errors and should be avoided. (5) The approximation based on the assumption of constant elastic modulus is only applicable for a ratio of η0.01 and can be very misleading.

1.
X. C.
Zhang
,
B. S.
Xu
,
H. D.
Wang
, and
Y. X.
Wu
, in
Proceedings of the Fracture Mechanics Symposium 2004
, edited by
G. C.
Sih
,
S. T.
Tu
, and
Z. D.
Wang
(
Yellow Mountain, Anhui
, People's Republic of China,
2004
), pp.
225
239
.
2.
Y. C.
Tsui
and
T. W.
Clyne
,
Thin Solid Films
306
,
23
(
1997
).
3.
C. H.
Hsueh
and
A. G.
Evans
,
J. Am. Ceram. Soc.
68
,
241
(
1985
).
4.
C. A.
Klein
,
J. Appl. Phys.
88
,
5487
(
2000
).
5.
G. G.
Stoney
,
Proc. R. Soc. London
A82
,
172
(
1909
).
6.
C.
Klein
and
R.
Miller
,
J. Appl. Phys.
87
,
2265
(
2000
).
7.
S.
Timoshenko
,
J. Opt. Soc. Am.
11
,
23
(
1925
).
8.
A.
Brenner
and
S.
Senderoff
,
J. Res. Natl. Bur. Stand.
42
,
105
(
1949
).
9.
N. N.
Davidenkov
Sov. Phys. Solid State
2
,
2595
(
1961
).
10.
R. H.
Saul
,
J. Appl. Phys.
40
,
3273
(
1969
).
11.
F. K.
Reinhart
and
R. A.
Logan
,
J. Appl. Phys.
44
,
3171
(
1973
).
12.
K.
Röll
,
J. Appl. Phys.
47
,
3224
(
1976
).
13.
G. H.
Olsen
and
M.
Ettenberg
,
J. Appl. Phys.
48
,
2543
(
1977
).
14.
H.
Shimizu
,
K.
Itoh
,
M.
Wada
,
T.
Sugino
, and
I.
Termoto
,
IEEE J. Quantum Electron.
QE-17
,
763
(
1981
).
15.
J.
Vilms
and
D.
Kerps
,
J. Appl. Phys.
53
,
1536
(
1982
).
16.
Z. C.
Feng
and
H. D.
Liu
,
J. Appl. Phys.
54
,
83
(
1983
).
17.
P. H.
Townsend
,
D. M.
Barnett
, and
T. A.
Brunner
,
J. Appl. Phys.
62
,
4438
(
1987
).
18.
C. H.
Hsueh
,
Thin Solid Films
418
,
182
(
2002
).
19.
A. S.
Manning
and
S.
Fuchs
,
Mater. Des.
18
,
61
(
1997
).
20.
X. C.
Zhang
,
B. S.
Xu
,
H. D.
Wang
, and
Y. X.
Wu
,
Thin Solid Films
488
,
274
(
2005
).
21.
H.
Windischmann
and
K. J.
Gray
,
Diamond Relat. Mater.
4
,
837
(
1995
).
22.
A.
Atkinson
,
Br. Ceram. Proc.
54
,
1
(
1995
).
23.
J. D.
Schäfer
,
H.
Näfe
, and
F.
Aldinger
,
J. Appl. Phys.
85
,
8023
(
1999
).
24.
V.
Teixeira
,
Thin Solid Films
392
,
276
(
2001
).
25.
You do not currently have access to this content.