Room-temperature ferromagnetic In1xCrxN films with x ranging from 0.0005 to 0.04 and antiferromagnetic CrN films have been grown by plasma-assisted molecular-beam epitaxy. Electron and x-ray-diffraction techniques could find no evidence for precipitates or phase segregation within the films. Ferromagnetism was observed in the In1xCrxN layers over a wide range of Cr concentrations, with the magnitude of the ferromagnetism found to correlate with the background carrier concentration. Higher n-type carrier concentrations were found to lead enhanced ferromagnetism, with maximum saturation and remnant moments of 7 and 0.7emucm3, respectively. The addition of Cr to the InN matrix led to reduced photoluminescence intensity and a shift of the peak to higher energy. These observations along with a band-gap-like optical transmission feature at 0.7 eV suggest that CrN has an indirect gap of approximately 0.7 eV and a direct Γ-valley gap greater than 1.2 eV.

1.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnar
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Tregger
,
Science
294
,
1488
(
2001
).
2.
V. F.
Motsnyi
,
J. D.
Boek
,
J.
Das
,
W. V.
Roy
, and
G.
Borghs
,
Appl. Phys. Lett.
81
,
265
(
2002
).
3.
H.
Ohno
,
A.
Shen
,
F.
Matsukura
,
A.
Oiwa
,
A.
Endo
,
S.
Katsumoto
, and
Y.
Lye
,
Appl. Phys. Lett.
69
,
363
(
1996
).
4.
H.
Ohno
,
H.
Munekata
,
T.
Penney
,
S.
von Molnar
, and
L. L.
Chan
,
Phys. Rev. Lett.
68
,
2664
(
1993
).
5.
T.
Dietl
,
H.
Ohno
, and
F.
Matsukura
,
Phys. Rev. B
63
,
195205
(
2001
).
6.
D.
Kumar
,
J.
Antifakos
,
M. G.
Blamire
, and
Z. H.
Barber
,
J. Appl. Phys.
84
,
5004
(
2004
).
7.
S. B.
Oagle
 et al,
Phys. Rev. Lett.
91
,
077205
(
2003
).
8.
W. K.
Park
,
R. J.
Ortega-Hertogs
, and
J. S.
Moodera
,
J. Appl. Phys.
91
,
8093
(
2002
).
9.
K. H.
Kim
,
K. J.
Lee
,
D. J.
Kim
,
H. J.
Kim
, and
Y. E.
Ihm
,
Appl. Phys. Lett.
82
,
4755
(
2003
).
10.
A. F.
Hebard
,
R. P.
Rairigh
,
J. G.
Kelly
,
S. J.
Pearton
,
C. R.
Abernathy
,
S. N.G.
Chu
, and
R. G.
Wilson
,
J. Phys. D
37
,
511
(
2004
).
11.
J.
Wu
 et al,
Appl. Phys. Lett.
80
,
21
(
2002
).
12.
V. Y.
Davydov
 et al,
Phys. Status Solidi B
229
,
R1
(
2001
).
13.
P. P.
Chen
,
H.
Makino
, and
T.
Yao
,
Solid State Commun.
130
,
25
(
2004
).
14.
P. P.
Chen
,
H.
Makino
, and
T.
Yao
,
J. Cryst. Growth
269
,
66
(
2004
).
15.
L. M.
Corliss
,
N.
Elliot
, and
J. M.
Hastings
,
Phys. Rev.
117
,
929
(
1960
).
16.
A.
Filipetti
,
W. E.
Pickett
, and
B. M.
Klein
,
Phys. Rev. B
59
,
7043
(
1999
).
17.
J. D.
Browne
,
P. R.
Liddell
,
R.
Street
, and
T.
Mills
,
Phys. Status Solidi
1
,
715
(
1970
).
18.
D.
Gall
,
C.-S.
Shin
,
R. T.
Haasch
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
91
,
5882
(
2002
).
19.
P. S.
Herle
,
M. S.
Hegde
,
N. Y.
Vasathacharya
, and
S.
Philip
,
J. Solid State Chem.
134
,
120
(
1997
).
20.
J. R.
Bird
and
J. S.
Williams
,
Ion Beams for Materials Analysis
(
Academic
, Bowen Hills, Australia,
1989
).
21.
S. J.
Pearton
 et al,
J. Appl. Phys.
93
,
1
(
2003
).
22.
T.
Dietl
and
H.
Ohno
,
MRS Bull.
28
,
714
(
2003
).
23.
T.
Story
,
R. R.
Gatazka
,
R. B.
Frankel
, and
P. A.
Wolff
,
Phys. Rev. Lett.
56
,
777
(
1986
).
24.
S.
Koshihara
,
A.
Oiwa
,
M.
Hirasawa
,
S.
Katsumoto
,
Y.
Iye
,
C.
Urano
, and
H.
Takagi
,
Phys. Rev. Lett.
78
,
4617
(
1997
).
25.
R. J.
Kinsey
,
P. A.
Anderson
,
C. E.
Kendrick
,
R. J.
Reeves
, and
S. M.
Durbin
,
J. Cryst. Growth
269
,
166
(
2004
).
26.
Y.
Tsuchiya
,
K.
Kosuge
,
Y.
Ikeda
,
T.
Shigematsu
,
S.
Yamaguchi
, and
N.
Nakayama
,
Mater. Trans., JIM
37
,
121
(
1996
).
You do not currently have access to this content.