While electronic and spectroscopic properties of self-assembled In1xGaxAsGaAs dots depend on their shape, height, and alloy compositions, these characteristics are often not known accurately from experiment. This creates a difficulty in comparing measured electronic and spectroscopic properties with calculated ones. Since simplified theoretical models (effective mass, kp, parabolic models) do not fully convey the effects of shape, size, and composition on the electronic and spectroscopic properties, we offer to bridge the gap by providing accurately calculated results as a function of the dot height and composition. Prominent features of our results are the following: (i) Regardless of height and composition, the confined electron energy levels form shells of nearly degenerate states with a predominant s,p, orbital character. On the contrary, the confined hole energy levels form shells only in flat dots and near the highest hole level (HOMO). (ii) In alloy dots, the electronss-p splitting depends weakly on height, while the p-p splitting depends nonmonotonically due to alloy fluctuations. In pure, nonalloyed InAsGaAs dots, both these splittings depend weakly on height. Furthermore, the s-p splitting is larger, while the p-p has nearly the same magnitude. For hole levels in alloy dots, the s-p splitting decreases with increasing height (the splitting in tall dots being about four times smaller than in flat dots), whereas the p-p splitting remains nearly unchanged. Shallow, pure, nonalloyed dots have a s-p splitting of nearly the same magnitude, whereas the p-p splitting is about three times larger. (iii) As height increases, the s and p characters of the wave function of the HOMO becomes mixed, and so does its heavy-hole and light-hole characters. (iv) In alloy dots, regardless of height, the wave function of low-lying hole states are localized inside the dot. Remarkably, in nonalloyed InAsGaAs dots these states become localized at the interface as height increases. The localized states are nearly degenerate and polarized along [11¯0] and [110]. This localization is driven by the peculiarities of the biaxial strain present in the nanostructure.

1.
S.
Fafard
,
R.
Leon
,
D.
Leonard
,
J. L.
Merz
, and
P. M.
Petroff
,
Phys. Rev. B
52
,
5752
(
1995
);
S.
Fafard
,
D.
Leonard
,
J. L.
Merz
, and
P. M.
Petroff
,
Appl. Phys. Lett.
65
,
1388
(
1994
);
J.-Y.
Marzin
,
J.-M.
Gérard
,
A.
Izräel
,
D.
Barrier
, and
G.
Bastard
,
Phys. Rev. Lett.
73
,
716
(
1994
);
[PubMed]
M.
Grundmann
 et al,
Phys. Rev. Lett.
74
,
4043
(
1994
).
2.
F.
Guffarth
,
R.
Heitz
,
A.
Schliwa
,
O.
Stier
,
M.
Geller
,
C. M. A.
Kapteyn
,
R.
Sellin
, and
D.
Bimberg
,
Phys. Rev. B
67
,
235304
(
2003
);
J. J.
Finley
 et al,
Phys. Rev. B
63
,
073307
(
2001
);
R. J.
Warburton
,
C. S.
Dürr
,
K.
Karrai
,
J. P.
Kotthaus
,
G.
Medeiros-Ribeiro
, and
P. M.
Petroff
,
Phys. Rev. Lett.
79
,
5282
(
1997
).
3.
J. J.
Finley
,
Phys. Rev. B
63
,
161305
(
2001
).
4.
M.
Bayer
,
O.
Stern
,
P.
Hawrylak
,
S.
Fafard
, and
A.
Forchel
,
Nature (London)
405
,
923
(
2000
);
E.
Dekel
,
D.
Gershoni
,
E.
Ehrenfreund
,
J. M.
Garcia
, and
P.
Petroff
,
Phys. Rev. B
61
,
11009
(
2000
);
F.
Findeis
,
A.
Zrenner
,
G.
Böhm
, and
G.
Abstreiter
,
Solid State Commun.
114
,
227
(
2000
);
L.
Landin
,
M. S.
Miller
,
M.-E.
Pistol
,
C. E.
Pryor
, and
L.
Samuelson
,
Science
280
,
262
(
1998
);
[PubMed]
M.
Bayer
,
T.
Gutbrod
,
A.
Forchel
,
V. D.
Kulakovskii
,
A.
Gorbunov
,
M.
Michel
,
R.
Steffen
, and
K. H.
Wang
,
Phys. Rev. B
58
,
4740
(
1998
).
5.
E.
Dekel
,
D.
Gershoni
,
E.
Ehrenfreund
,
D.
Spektor
,
J. M.
Garcia
, and
P. M.
Petroff
,
Phys. Rev. Lett.
80
,
4991
(
1998
).
6.
B.
Urbaszek
,
R. J.
Warburton
,
K.
Karrai
,
B. D.
Gerardot
,
P. M.
Petroff
, and
J. M.
Garcia
,
Phys. Rev. Lett.
90
,
247403
(
2003
);
[PubMed]
M.
Bayer
 et al,
Phys. Rev. B
65
,
195315
(
2002
);
J. J.
Finley
,
D. J.
Mowbray
,
M. S.
Skolnick
,
A. S.
Ashmore
,
C.
Baker
,
A. F. G.
Monte
, and
M.
Hopkinson
,
Phys. Rev. B
66
,
153316
(
2002
).
8.
L.
He
,
G.
Bester
, and
A.
Zunger
,
Phys. Rev. B
70
,
235316
(
2004
).
9.
G.
Bester
,
S.
Nair
, and
A.
Zunger
,
Phys. Rev. B
67
,
161306
(
2003
).
10.
G.
Bester
and
A.
Zunger
,
Phys. Rev. B
68
,
073309
(
2003
).
11.
J.
Simonin
,
C. R.
Proetto
,
Z.
Barticevic
, and
G.
Fuster
,
Phys. Rev. B
70
,
205305
(
2004
).
12.
A.
Wojs
,
P.
Hawrylak
,
S.
Fafard
, and
L.
Jacak
,
Phys. Rev. B
54
,
5604
(
1996
).
13.
J.
Shumway
,
A. J.
Williamson
,
A.
Zunger
,
A.
Passaseo
,
M.
DeGiorgi
,
R.
Cingolani
,
M.
Catalano
, and
P.
Crozier
,
Phys. Rev. B
64
,
125302
(
2001
).
14.
A. J.
Williamson
,
L. W.
Wang
, and
A.
Zunger
,
Phys. Rev. B
62
,
12963
(
2000
).
15.
N.
Liu
,
H. K.
Lyeo
,
C. K.
Shih
,
M.
Oshima
,
T.
Mano
, and
N.
Koguchi
,
Appl. Phys. Lett.
80
,
4345
(
2002
).
16.
D. M.
Bruls
,
J. W. A. M.
Vugs
,
P. M.
Koenraad
,
H. W. M.
Salemik
,
J. H.
Wolter
,
M.
Hopkinson
,
M. S.
Skolnick
,
F.
Long
, and
S. P. A.
Gill
,
Appl. Phys. Lett.
81
,
1708
(
2002
).
17.
Q.
Gong
,
P.
Offeremans
,
R.
Nötzel
,
P. M.
Koenraad
, and
J. H.
Wolter
,
Appl. Phys. Lett.
85
,
5697
(
2004
).
18.
L.
Jacak
,
P.
Hawrylak
, and
A.
Wojs
,
Quantum Dots
(
Springer
, Berlin,
1997
).
19.
M. A.
Cusak
,
P. R.
Briddon
, and
M.
Jaros
,
Phys. Rev. B
54
,
R2300
(
1996
);
J.
Marzin
and
G.
Bastard
,
Solid State Commun.
92
,
437
(
1994
).
20.
T. B.
Bahder
,
Phys. Rev. B
45
,
1629
(
1992
);
T. B.
Bahder
,
Phys. Rev. B
41
,
11992
(
1990
);
[see also
T. B.
Bahder
,
Phys. Rev. B
46
,
9913
(
1992
)], and references therein.
21.
L.-W.
Wang
and
A.
Zunger
,
Phys. Rev. B
59
,
15806
(
1999
).
22.
L. W.
Wang
,
A. J.
Williamson
,
A.
Zunger
,
H.
Jiang
, and
J.
Singh
,
Appl. Phys. Lett.
76
,
339
(
2000
).
24.
S.
Lee
,
O. L.
Lazarenkova
,
P.
von Allmen
,
F.
Oyafuso
, and
G.
Klimeck
,
Phys. Rev. B
70
,
125307
(
2004
);
R.
Santoprete
,
B.
Koiler
,
R. B.
Capaz
,
P.
Kratzer
,
Q. K. K.
Liu
, and
M.
Scheffler
,
Phys. Rev. B
68
,
235311
(
2003
);
G. W.
Bryant
and
W.
Jaskólski
,
Phys. Rev. B
67
,
205320
(
2003
);
S.
Lee
,
L.
Jönsson
,
J. W.
Wilkins
,
G. W.
Bryant
, and
G.
Klimeck
,
Phys. Rev. B
63
,
195318
(
2001
);
K.
Leung
and
K. B.
Whaley
,
Phys. Rev. B
56
,
7455
(
1997
).
25.
R.
Ferreira
,
Physica E (Amsterdam)
13
,
216
(
2002
).
26.
M.
Grundmann
,
O.
Stier
, and
D.
Bimberg
,
Phys. Rev. B
52
,
11969
(
1995
).
27.
O.
Stier
,
M.
Grundmann
, and
D.
Bimberg
,
Phys. Rev. B
59
,
5688
(
1999
).
28.
F.
Guffarth
,
R.
Heitz
,
A.
Schliwa
,
O.
Stier
,
N. N.
Ledentsov
,
A. R.
Kovsh
,
V. M.
Ustinov
, and
D.
Bimberg
,
Phys. Rev. B
64
,
085305
(
2001
).
29.
30.
R.
Heitz
,
S.
Rodt
,
A.
Schliwa
, and
D.
Bimberg
,
Phys. Status Solidi B
238
,
273
(
2003
);
O.
Stier
,
R.
Heitz
,
A.
Schliwa
, and
D.
Bimberg
,
Phys. Status Solidi A
190
,
477
(
2002
).
31.
J.
Kim
,
L. W.
Wang
, and
A.
Zunger
,
Phys. Rev. B
57
,
R9408
(
1998
).
32.
D.
Leonard
,
M.
Krishnamurthy
,
C. M.
Reaves
,
S. P.
Denbaars
, and
P. M.
Petroff
,
Appl. Phys. Lett.
63
,
3203
(
1993
);
D.
Leonard
,
K.
Pond
, and
P. M.
Petroff
,
Phys. Rev. B
50
,
11687
(
1994
);
S.
Raymond
,
S.
Fafard
,
P. J.
Poole
,
A.
Wojs
,
P.
Hawrylak
,
S.
Charbonneau
,
D.
Leonard
,
R.
Leon
,
P. M.
Petroff
, and
J. L.
Merz
,
Phys. Rev. B
54
,
11548
(
1996
);
Z. R.
Wasilewski
,
S.
Fafard
, and
J. P.
McCaffrey
,
J. Cryst. Growth
201–202
,
1131
(
1999
);
A. G.
Cullis
,
D. J.
Norris
,
T.
Walther
,
M. A.
Migliorato
, and
M.
Hopkinson
,
Phys. Rev. B
66
,
081305
(
2002
);
S.
Anders
,
C. S.
Kim
,
B.
Klein
,
M. W.
Weller
, and
R. P.
Mirin
,
Phys. Rev. B
66
,
125309
(
2002
).
33.
M.
Tadić
,
F. M.
Peeters
,
K. L.
Janssens
,
M.
Korkusinski
, and
P.
Hawrylak
,
J. Appl. Phys.
92
,
5819
(
2002
).
34.
C.
Pryor
,
J.
Kim
,
L. W.
Wang
,
A. J.
Williamson
, and
A.
Zunger
,
J. Appl. Phys.
83
,
2548
(
1998
).
35.
R. M.
Martin
,
Phys. Rev. B
1
,
4005
(
1970
);
P. N.
Keating
,
Phys. Rev.
145
,
637
(
1966
).
36.
G.
Bester
and
A.
Zunger
,
Phys. Rev. B
71
,
045318
(
2005
).
37.
W.
Sheng
and
J.-P.
Leburton
,
Phys. Status Solidi B
237
,
394
(
2003
);
O.
Stier
,
Electronic and Optical Properties of Quantum Dots and Wires
(
Wissenschaft & Technik
, Berlin,
2001
).
38.
C.
Pryor
,
M.-E.
Pistol
, and
L.
Samuelson
,
Phys. Rev. B
56
,
10404
(
1997
).
39.
O. L.
Lazarenkova
,
P.
von Almen
,
F.
Oyafuso
,
S.
Lee
, and
G.
Klimeck
,
Appl. Phys. Lett.
85
,
4193
(
2004
).
40.
J. D.
Eshelby
,
J. Appl. Phys.
25
,
255
(
1954
).
41.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. B
49
,
14337
(
1994
).
42.

This shell-structure feature agrees qualitatively with the prediction of a single-band, effective-mass, two-dimensional harmonic oscillator (see Ref. 18).

43.
A.
Franceschetti
,
H.
Fu
,
L. W.
Wang
, and
A.
Zunger
,
Phys. Rev. B
60
,
1819
(
1999
).
44.
45.
G. A.
Narvaez
,
G.
Bester
, and
A.
Zunger
(unpublished).
46.

This “crown” structure has been predicted by He and co-workers in Ref. 8 and has been argued that it is this structure that is responsible for similar localization of hole wave functions found in large, nonalloyed InAsGaAsspherical quantum dots. (Ref. 8).

47.
For single-band effective-mass calculations of the single-particle electronic levels in lens-shaped semiconductor quantum dots with aspect ratio hb=0.25 and 0.5 see
J.
Even
and
S.
Loualiche
,
J. Phys. A
36
,
11677
(
2003
) and
A. H.
Rodriguez
,
C.
Trallero-Giner
,
S. E.
Ulloa
, and
J.
Marín-Antuña
,
Phys. Rev. B
63
,
125319
(
2001
), respectively.
You do not currently have access to this content.