A prediction model of silicon oxynitride (SiON) etching was constructed using a neural network. Model prediction performance was improved by means of genetic algorithm. The etching was conducted in a C2F6 inductively coupled plasma. A 24 full factorial experiment was employed to systematically characterize parameter effects on SiON etching. The process parameters include radio frequency source power, bias power, pressure, and C2F6 flow rate. To test the appropriateness of the trained model, additional 16 experiments were conducted. For comparison, four types of statistical regression models were built. Compared to the best regression model, the optimized neural network model demonstrated an improvement of about 52%. The optimized model was used to infer etch mechanisms as a function of parameters. The pressure effect was noticeably large only as relatively large ion bombardment was maintained in the process chamber. Ion-bombardment-activated polymer deposition played the most significant role in interpreting the complex effect of bias power or C2F6 flow rate. Moreover, [CF2] was expected to be the predominant precursor to polymer deposition.

1.
N.
Konofaos
,
E. K.
Evangelou
,
X.
Aslanoglou
,
M.
Kokkoris
, and
R.
Vlastou
,
Semicond. Sci. Technol.
19
,
50
(
2004
).
2.
R.
Germann
,
H. W.
Salemink
,
R.
Beyeler
,
G. L.
Bona
,
F.
Horst
,
I.
Massarek
, and
B. J.
Offrein
,
J. Electrochem. Soc.
147
,
2237
(
2000
).
3.
Y. T.
Kim
,
S. M.
Cho
,
Y. G.
Seo
,
H. D.
Yoon
,
Y. M.
Im
, and
D. H.
Yoon
,
Surf. Coat. Technol.
173
,
204
(
2003
).
4.
K. J.
Plucinski
,
M.
Makawska
,
A.
Mefleh
,
I. V.
Kityk
, and
V. G.
Yushanin
,
Mater. Sci. Eng., B
64
,
88
(
1999
).
5.
B.
Kim
and
K.
Kwon
,
J. Appl. Phys.
93
,
76
(
2003
).
6.
B.
Kim
,
K. H.
Kwon
,
S. K.
Kwon
,
J. M.
Park
,
S. W.
Yoo
,
K. S.
Park
,
I. K.
You
, and
B. W.
Kim
,
Thin Solid Films
426
,
8
(
2003
).
7.
B.
Kim
,
D.
Lee
, and
K. H.
Kwon
,
J. Appl. Phys.
96
,
3612
(
2004
).
8.
B.
Kim
and
B. T.
Lee
,
J. Vac. Sci. Technol. A
22
,
2517
(
2004
).
9.
D. F.
Specht
,
IEEE Trans. Neural Netw.
2
,
568
(
1991
).
10.
D. E.
Goldbeg
,
Genetic Algorithms in Search, Optimization & Machine Learning
(
Addison-Wesley
, readings MAJ
1989
).
11.
D. C.
Mongomery
,
Design and Analysis of Experiments
(
Wiley
, New York,
1991
).
12.
P.
Ho
,
J. E.
Johannes
,
R. J.
Buss
, and
E.
Meeks
,
J. Vac. Sci. Technol. A
19
,
2344
(
2001
)
13.
M. J.
Sowa
,
M. E.
Littau
,
V.
Pohray
, and
J. L.
Cecchi
,
J. Vac. Sci. Technol. A
18
,
2122
(
2002
).
14.
Y.
Horiike
,
K.
Kubota
,
H.
Shindo
, and
T.
Fukasawa
,
J. Vac. Sci. Technol. A
13
,
801
(
1995
).
You do not currently have access to this content.