The intermetallic compound TmZn has two low-temperature magnetic phase transitions and is a potential regenerator material. Application of a magnetic field to regulate the phase-transition temperature by influencing the specific heat cp(T) dependence in TmZn was investigated. The low-temperature heat capacity of a monocrystalline TmZn sample was measured as a function of magnetic field (up to 30 kOe). The anisotropy of the transition temperature in the applied magnetic field was modeled using ac susceptibility measurements. From the measured values, the TmZn regenerator specific heat was calculated taking into account both the temperature regulation and the anisotropy. A numerical simulation study of the TmZn regenerator was made. The results show an improvement in TmZn regenerator performance by the application of a magnetic field and employment of the transition anisotropy. The minimal cold chamber temperature was lowered from 11.76 to 9.77 K by the application of a magnetic field of 30 kOe. The performance of the TmZn regenerator is compared with the existing regenerator materials, Er3Ni, Pb, HoCu2, and Er50Pr50.

1.
L.
Yang
,
Y.
Zhou
, and
J.
Liang
,
Cryogenics
39
,
417
(
1999
).
2.
G.
Chen
 et al.,
Cryogenics
37
,
529
(
1997
).
3.
A.
von Schneidemesser
,
G.
Thummes
, and
C.
Heiden
,
Cryogenics
39
,
783
(
1999
).
4.
L. M.
Qiu
,
T.
Numazawa
, and
G.
Thummes
,
Cryogenics
41
,
693
(
2001
).
5.
T.
Biwa
,
H.
Ikuta
, and
U.
Mizutani
,
Jpn. J. Appl. Phys., Part 1
37
,
5808
(
1998
).
6.
K. H.J.
Buschow
,
J. F.
Olijhoek
, and
A. R.
Miedema
,
Cryogenics
15
,
261
(
1975
).
7.
K. N.R.
Taylor
,
Adv. Phys.
20
,
551
(
1971
).
8.
H.
Yayama
,
A.
Tomokiyo
,
T.
Hashimoto
,
T.
Kuzuhara
,
R.
Li
,
M.
Sahashi
, and
K.
Inomata
,
IEEE Trans. Magn.
23
,
2850
(
1987
);
M.
Sahashi
,
Y.
Tokai
,
T.
Kuriyama
,
H.
Nakagome
,
R.
Li
,
M.
Ogawa
, and
T.
Hashimoto
,
Adv. Cryog. Eng.
35
,
1175
(
1990
);
Y.
Long
,
T.
Hashiguchi
,
T.
Hashimoto
,
M.
Okamura
, and
N.
Sori
,
J. Appl. Phys.
77
,
2214
(
1995
);
T.
Biwa
,
W.
Yagi
, and
U.
Mizutani
,
Jpn. J. Appl. Phys., Part 1
35
,
2244
(
1996
);
I. A.
Tanaeva
,
H.
Ikeda
,
L. J.A.
van Bokhoven
,
Y.
Matsubara
, and
A. T.A.M.
de Waele
,
Cryogenics
43
,
441
(
2003
).
9.
T.
Satoh
,
A.
Onishi
,
I.
Umehara
,
Y.
Adachi
,
K.
Sato
, and
E. J.
Minehara
, in
Cryocoolers 11
, edited by
R. G.
Ross
, Jr.
(
Kluwer Academic
, New York,
2001
).
10.
A.
Takahashi
,
Y.
Tokai
,
M.
Sahashi
, and
T.
Hashimoto
,
Jpn. J. Appl. Phys., Part 1
33
,
1023
(
1994
).
11.
H.
Makuuchi
,
T.
Aikawa
,
K.
Matsumoto
,
T.
Hashimoto
,
R.
Li
,
A.
Onishi
,
T.
Satoh
, and
Y.
Kanazawa
,
Jpn. J. Appl. Phys., Part 2
34
,
L1003
(
1995
).
12.
W.
Yagi
,
H.
Iwata
, and
U.
Mizutani
,
Jpn. J. Appl. Phys., Part 1
37
,
4787
(
1998
).
13.
R.
Li
,
M.
Ogawa
, and
T.
Hashimoto
,
Cryogenics
30
,
521
(
1990
).
14.
W.
Yagi
,
H.
Iwata
, and
U.
Mizutani
,
Jpn. J. Appl. Phys., Part 1
36
,
5638
(
1997
).
15.
C.
Wang
,
G.
Thummes
, and
C.
Heiden
,
Cryogenics
37
,
159
(
1997
).
16.
M. Y.
Xu
,
A. T.A.M.
De Waele
, and
Y. L.
Ju
,
Cryogenics
39
,
865
(
1999
).
17.
D.
Givord
,
P.
Morin
, and
D.
Schmitt
,
J. Magn. Magn. Mater.
40
,
121
(
1983
).
18.
P.
Morin
,
J.
Rouchy
, and
D.
Schmitt
,
Phys. Rev. B
17
,
3684
(
1978
).
19.
K. A.
Gschneidner
, Jr.
,
A. O.
Pecharsky
, and
V. K.
Pecharsky
, in
Cryocoolers 11
, edited by
R. G.
Ross
, Jr.
(
Kluwer Academic
, New York,
2001
).
20.
R.
Radebaugh
,
A.
O’Gallagher
, and
J.
Gary
,
Adv. Cryog. Eng.
47A
,
961
(
2002
).
21.
V. D.
Arp
,
R. D.
McCarty
, and
D. G.
Friend
,
Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa
(
U.S. Dept. of Commerce
, NIST Technical Note 1334 (revised), Washington,
1998
).
22.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
Hemisphere
, New York,
1980
).
23.
A.
Jeromen
, Ph.D. thesis,
University of Ljubljana
, Ljubljana,
2004
.
24.
Y.
Tokai
,
A.
Takahashi
,
M.
Sahashi
,
T.
Hashimoto
,
H.
Yayama
, and
A.
Tomokiyo
,
Jpn. J. Appl. Phys., Part 1
31
,
3332
(
1992
).
You do not currently have access to this content.