Microwave tunable dielectric properties of strained (001) SrTiO3 thin films epitaxially deposited on (110) DyScO3 substrates were studied for in-plane film orientations ([100], [010], [110], and [110]). A significant in-plane anisotropy in dielectric constant and tuning was observed in these SrTiO3 films. The highest dielectric constant and tuning at room temperature are observed along the [010] direction of the SrTiO3 film (1000 Å thick) (3500 and 70% at 1Vμm, respectively), the lowest ones are observed along the [100] direction (i.e., 2000 and 50% at 1Vμm, respectively). The dielectric constant and tuning along [110] and [110] are about 2500 and 30% at 1Vμm, respectively, which are intermediary to those along the [010] and [100] directions. The dielectric Q(=1tanδ) does not show any large difference for the four directions (i.e., Q1020). Also, the phase-transition peak for the [110] and [110] directions of the SrTiO3 film (300 Å thick) is observed at 275 K, which is lower than that for the [010] and [100] directions. The observed in-plane anisotropic dielectric properties have been interpreted based on the phenomenological thermodynamics of film strain.

1.
2.
P. W.
Forsbergh
, Jr.
,
Phys. Rev.
93
,
686
(
1954
).
3.
G. A.
Samara
and
A. A.
Giardini
,
Phys. Rev.
140
,
A954
(
1965
).
4.
J. H.
Haeni
 et al.,
Nature (London)
430
,
758
(
2004
).
5.
W.
Chang
,
S. W.
Kirchoefer
,
J. A.
Bellotti
,
J. M.
Pond
,
J. H.
Haeni
, and
D. G.
Schlom
,
J. Appl. Phys.
96
,
6629
(
2004
).
6.
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
61
,
R825
(
2000
);
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
65
,
219901
(E) (
2002
).
7.
V.
Nagarajan
 et al.,
Nat. Mater.
2
,
43
(
2003
).
8.
J. H.
Haeni
,
C. D.
Theis
, and
D. G.
Schlom
,
J. Electroceram.
4
,
385
(
2000
).
9.
J. A.W.
Dalziel
,
J. Chem. Soc.
1959
,
1993
(
1959
).
10.
JCPDS
, Card No. 27-0204.
11.
J. H.
Haeni
 et al.,
J. Appl. Phys.
(submitted).
12.
S. S.
Gevorgian
,
T.
Martinsson
,
P. I.J.
Linner
, and
E. L.
Kollberg
,
IEEE Trans. Microwave Theory Tech.
44
,
896
(
1996
).
13.
W.
Chang
,
J. S.
Horwitz
,
W. J.
Kim
,
J. M.
Pond
,
S. W.
Kirchoefer
,
C. M.
Gilmore
,
S. B.
Qadri
, and
D. B.
Chrisey
,
Integr. Ferroelectr.
24
,
257
(
1999
).
14.
J. M.
Pond
,
S. W.
Kirchoefer
,
W.
Chang
,
J. S.
Horwitz
, and
D. B.
Chrisey
,
Integr. Ferroelectr.
22
,
837
(
1998
).
15.
A. F.
Devonshire
,
Adv. Phys.
3
,
85
(
1954
).
16.
G.
Schmidt
and
E.
Hegenbarth
,
Phys. Status Solidi
3
,
329
(
1963
).
17.
K. A.
Muller
and
H.
Burkard
,
Phys. Rev. B
19
,
3593
(
1979
).
18.
T.
Yamada
,
J. Appl. Phys.
43
,
328
(
1972
).
19.

The parameters used in this article: Q11(m4C2)=0.066, Q12=0.015, Q44=0.10 (i.e., the relevant electrostriction coefficients have the opposite signs to the case of a Gibb’s energy expression containing negatively signed electrostriction-related terms), C11(1011Nm2)=3.169, C12=1.026, C44=1.226, TC(K)=35.5, C(104K)=8.0.

20.
D. E.
Grupp
and
A. M.
Goldman
,
Science
276
,
392
(
1997
).
You do not currently have access to this content.