We studied the effect of the VIII flux ratio and substrate temperature on magnetotransport properties and lattice parameters of Ga0.96Mn0.04As grown by molecular-beam epitaxy. For all the substrate temperatures, the conductivities and Curie temperatures of the layers were found to increase as the VIII flux ratio approaches 1. A Curie temperature as high as 95 K was achieved for the Ga0.96Mn0.04As samples grown at 240 °C and a VIII ratio of about 1.5. The lattice parameter of Ga0.96Mn0.04As increased with decreasing VIII ratio and/or increasing growth temperature. Possible reasons for the effect of the VIII ratio on the magnetotransport properties and lattice parameter of GaMnAs are discussed.

1.
H.
Ohno
,
A.
Shen
,
F.
Matsukura
,
A.
Oiwa
,
A.
Endo
,
S.
Katsumoto
, and
Y.
Iye
,
Appl. Phys. Lett.
69
,
363
(
1996
).
2.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
3.
A.
Koeder
 et al.,
Appl. Phys. Lett.
85
,
783
(
2004
).
4.
K. W.
Edmonds
,
K. Y.
Wang
,
R. P.
Campion
,
A. C.
Neumann
,
N. R.S.
Farley
,
B. L.
Gallagher
, and
C. T.
Foxon
,
Appl. Phys. Lett.
81
,
4991
(
2002
).
5.
K. C.
Ku
 et al.,
Appl. Phys. Lett.
82
,
2302
(
2003
).
6.
A. M.
Nazmul
,
S.
Sugahara
, and
M.
Tanaka
,
Phys. Rev. B
67
,
241308
(
2003
).
7.
K. M.
Yu
,
W.
Walukiewicz
,
T.
Wojtowicz
,
I.
Kuryliszyn
,
X.
Liu
,
Y.
Sasaki
, and
J. K.
Furdyna
,
Phys. Rev. B
65
,
201303
(
2002
).
8.
J.
Blinkowski
and
P.
Kacman
,
Phys. Rev. B
67
,
121204
(R) (
2003
).
9.
K. W.
Edmonds
,
K. Y.
Wang
,
R. P.
Campion
,
A. C.
Neumann
,
C. T.
Foxon
,
B. L.
Gallagher
, and
P. C.
Main
,
Appl. Phys. Lett.
81
,
3010
(
2002
).
10.
M.
Kaminska
,
Z.
Liliental-Weber
,
E. R.
Weber
, and
T.
George
,
Appl. Phys. Lett.
54
,
1881
(
1989
).
11.
M. O.
Manaresh
,
D. C.
Look
,
K. R.
Evans
,
K. R.
Evans
, and
C. E.
Stutz
,
Phys. Rev. B
41
,
10272
(
1990
).
12.
S. A.
McQuaid
,
R. C.
Newman
,
M.
Missous
, and
S.
O’Hagan
,
Appl. Phys. Lett.
61
,
3008
(
1992
).
13.
M.
Missous
and
S.
O’Hagan
,
J. Appl. Phys.
75
,
3396
(
1994
).
14.
J.
Sadowski
and
J. Z.
Domagala
,
Phys. Rev. B
69
,
075206
(
2004
).
15.
G. M.
Schott
,
W.
Faschinger
, and
L. W.
Molenkamp
,
Appl. Phys. Lett.
79
,
1807
(
2001
).
16.
G. M.
Schott
,
G.
Schmidt
,
G.
Karczewski
,
L. W.
Molenkamp
,
R.
Jakiela
,
A.
Barcz
, and
G.
Karczewski
,
Appl. Phys. Lett.
82
,
4678
(
2003
).
17.
Z.
Liliental-Weber
,
W.
Swider
,
K. M.
Yu
,
J.
Kortright
,
F. W.
Smith
, and
A. R.
Galawa
,
Appl. Phys. Lett.
58
,
2153
(
1991
).
18.
K. M.
Yu
,
M.
Kaminska
, and
Z.
Liliental-Weber
,
J. Appl. Phys.
72
,
2850
(
1992
).
19.
D. J.
Eaglesham
,
L. N.
Pfeiffer
,
K. W.
West
, and
D. R.
Dykaar
,
Appl. Phys. Lett.
58
,
65
(
1991
).
20.
H.
Ohno
,
H.
Munekata
,
T.
Penney
,
S.
von Molnar
, and
L. L.
Chang
,
Phys. Rev. Lett.
68
,
2664
(
1992
).
21.
S. T.B.
Goennenwein
 et al.,
Appl. Phys. Lett.
82
,
730
(
2003
).
22.
A.
Koeder
 et al.,
Appl. Phys. Lett.
82
,
3278
(
2003
).
23.
W.
Limmer
 et al.,
Phys. Rev. B
66
,
205209
(
2002
).
24.
Th.
Hartmann
 et al.,
Phys. Rev. B
70
,
233201
(
2004
).
25.
P.
Mahadevan
and
A.
Zunger
,
Phys. Rev. B
68
,
075202
(
2003
).
You do not currently have access to this content.