A modified model of metal-semiconductor contacts is applied to analyze the capacitance-voltage and current-voltage characteristics of metal-ferroelectric-metal structures. The ferroelectric polarization is considered as a sheet of surface charge situated at a fixed distance from the interface. The presumable high concentration of structural defects acting as active electric traps is taken into account by introducing a deep acceptorlike level. The model is applied on a set of metal-Pb(Zr,Ti)O3-metal samples with different ZrTi ratios, deposited by different methods, and having different thicknesses, electrode materials, and electrode areas. Values around 1018cm3 were estimated for the hole concentration from capacitance-voltage measurements. The space-charge density near the electrode, estimated from current-voltage measurements, is in the 10201021cm3 range. The total thickness of the interface layer ranges from 3to35nm, depending on the ZrTi ratio, on the shape of the hysteresis loop, and on the electrode material. The simulated I-V characteristics is fitted to the experimental one using the potential barrier and Richardson’s constant as parameters. The potential barrier is determined to be in the 1.091.37eV range and Richardson’s constant is 520Acm2K2.

1.
J. F.
Scott
, in
Ferroelectric Memories
,
Advanced Microelectronics Series
Vol.
3
, edited by
K.
Itoh
and
T.
Sakurai
(
Springer
, Berlin,
2000
).
2.
P. W.
Boom
,
R. M.
Wolf
,
J. F. M.
Cillessen
, and
M. P. C. M.
Krijn
,
Phys. Rev. Lett.
73
,
2107
(
1994
).
3.
Y. S.
Yang
,
S. J.
Lee
,
S. H.
Kim
,
B. G.
Chae
, and
M. S.
Jang
,
J. Appl. Phys.
84
,
5005
(
1998
).
4.
I.
Stolichnov
,
A.
Tagantsev
,
N.
Setter
,
J. S.
Cross
, and
M.
Tsukuda
,
Appl. Phys. Lett.
75
,
1790
(
1999
).
5.
T.
Mihara
and
H.
Watanabe
,
Jpn. J. Appl. Phys., Part 1
34
,
5664
(
1995
);
T.
Mihara
and
H.
Watanabe
,
Jpn. J. Appl. Phys., Part 1
34
,
5674
(
1995
).
6.
C.
Shudhama
,
A. C.
Campbell
,
P. D.
Maniar
,
R. E.
Jones
,
R.
Moazzami
,
C. J.
Mogab
, and
J. C.
Lee
,
J. Appl. Phys.
75
,
1014
(
1994
).
7.
I.
Stolichnov
and
A.
Tagantsev
,
J. Appl. Phys.
84
,
3216
(
1998
).
8.
B.
Nagaraj
,
S.
Aggaarwal
,
T. K.
Song
,
T.
Sawhney
, and
R.
Ramesh
,
Phys. Rev. B
59
,
16022
(
1999
).
9.
H.
Schroeder
,
S.
Schmitz
, and
P.
Meuffels
,
Appl. Phys. Lett.
82
,
781
(
2003
).
10.
J. D.
Baniecki
,
T.
Shioga
,
K.
Kurihara
, and
N.
Kamehara
,
J. Appl. Phys.
94
,
6741
(
2003
).
11.
J. C.
Shin
,
J.
Park
,
C. S.
Hwang
, and
H. J.
Kim
,
J. Appl. Phys.
86
,
506
(
1999
).
12.
C. H.
Lin
,
P. A.
Friddle
,
C. H.
Ma
,
A.
Daga
, and
H.
Chen
,
J. Appl. Phys.
90
,
1509
(
2001
).
13.
J. C.
Shin
,
C. S.
Hwang
,
H. J.
Kim
, and
S. O.
Park
,
Appl. Phys. Lett.
75
,
3411
(
1999
).
14.
B.
Chen
 et al,
Appl. Phys. Lett.
84
,
583
(
2004
).
15.
L.
Pintilie
and
M.
Alexe
,
J. Appl. Phys.
98
,
124103
(
2005
), preceding paper.
16.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
, New York,
1981
), Chap. 7 and 10.
17.
K. C.
Kao
and
W.
Hwang
, in
Electronic Transport in Solids
,
International Series in the Science of the Solid State
Vol.
14
, edited by
B. R.
Pamplin
(
Pergamon
, Oxford,
1981
).
18.
D.
Goren
,
N.
Amir
, and
Y.
Nemirovsky
,
J. Appl. Phys.
71
,
318
(
1992
).
19.
D.
Goren
and
Y.
Nemirovsky
,
J. Appl. Phys.
77
,
244
(
1995
).
20.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, (
Wiley-Interscience
, New York,
1998
).
21.
I.
Boerasu
,
L.
Pintilie
,
M.
Pereira
, and
M. J. M.
Gomes
,
J. Optoelectron. Adv. Mater.
5
,
769
(
2003
).
22.
I.
Boerasu
,
L.
Pintilie
,
M.
Pereira
,
M. I.
Vasilevskiy
, and
M. J. M.
Gomes
,
J. Appl. Phys.
93
,
4776
(
2003
).
23.
L.
Chen
,
J.
Ouyang
,
C. S.
Ganpule
,
V.
Nagarajan
,
R.
Ramesh
, and
A. L.
Roytburd
,
Appl. Phys. Lett.
84
,
254
(
2004
).
24.
Y.
Li
,
V.
Nagarajan
,
S.
Aggarwal
,
R.
Ramesh
,
L. G.
Salamanca-Riba
, and
L. J.
Martinez-Miranda
,
J. Appl. Phys.
92
,
6762
(
2002
).
25.
B.
Nagaraj
,
S.
Aggarwal
, and
R.
Ramesh
,
J. Appl. Phys.
90
,
375
(
2001
).
26.
D. C.
Lupascu
,
Phys. Rev. B
70
,
184124
(
2004
).
27.
S.
Aggarwal
and
R.
Ramesh
,
Annu. Rev. Mater. Sci.
28
,
463
(
1998
).
28.
J.
McAneney
,
L. J.
Sinnamon
,
R. M.
Bowman
, and
J. M.
Gregg
,
J. Appl. Phys.
94
,
4566
(
2003
).
29.
I.
Pintilie
,
L.
Pintilie
,
K.
Irmscher
, and
B.
Thomas
,
Appl. Phys. Lett.
81
,
4841
(
2002
).
30.
J.
Robertson
,
W. L.
Warren
, and
B. A.
Tuttle
,
J. Appl. Phys.
77
,
3975
(
1995
).
31.
F. M.
Pontes
,
D. S. L.
Pontes
,
E. R.
Leite
,
E.
Longo
,
A. J.
Chiquito
,
P. S.
Pizani
, and
J. A.
Varela
,
J. Appl. Phys.
94
,
7256
(
2003
).
32.
K. C.
Park
and
J. H.
Cho
,
Appl. Phys. Lett.
77
,
435
(
2000
).
33.
K. H.
Ahn
,
S. S.
Kim
, and
S.
Baik
,
J. Appl. Phys.
93
,
1725
(
2003
).
34.
D. P.
Chu
,
Z. G.
Zhang
,
P.
Migliorato
,
B. M.
McGregor
,
K.
Ohashi
,
K.
Hasegawa
, and
T.
Shimoda
,
Appl. Phys. Lett.
81
,
5204
(
2002
).
35.
J. F.
Scott
,
C. A.
Araujo
,
B. M.
Melnick
,
L. D.
McMillan
, and
R.
Zuleeg
,
J. Appl. Phys.
70
,
382
(
1991
).
36.
J.
Junquera
and
P.
Ghosez
,
Nature (London)
422
,
506
(
2003
).
You do not currently have access to this content.