Experimental procedures for evaluating the compositional homogeneity of LiNbO3 single crystals were developed using the line-focus-beam ultrasonic material characterization system, and the true congruent composition was determined. First, the relationships among leaky surface acoustic wave (LSAW) velocities (VLSAW), chemical compositions, Curie temperatures, densities, and lattice constants were investigated for crystal evaluation, using X-, Y-, and Z-cut substrates prepared from three LiNbO3 crystals grown along the crystallographic Z axis with different Li2O contents of 48.0, 48.5, and 49.0mol%. We selected VLSAW for Z-cut Y-axis propagating (ZY)LiNbO3 with the highest sensitivity to chemical composition changes [0.0253Li2Omol%(ms)], and also VLSAW for Y-cut X-axis propagating (YX)LiNbO3[0.0464Li2Omol%(ms)] that was advantageous for detailed evaluation of distributions in the chemical composition along the pulling direction as well as the diameter direction.The congruent composition was estimated to be 48.477Li2Omol%. Next, the homogeneities of the three above-mentioned crystals and a commercially available LiNbO3 crystal with a nominally congruent composition were evaluated using data for YX-LiNbO3 specimens. Consequently, compositional changes were observed clearly as VLSAW changes. The commercial crystal specimen had a gradient of 0.0046(ms)mm from top to bottom. The VLSAW variations for the entire examined region (60×36mm2) exhibited a maximum change of 0.55ms, corresponding to the chemical composition change of 0.025Li2Omol%. The relationships between the chemical compositions and the acoustical physical constants (the elastic, piezoelectric, and dielectric constants, and density) were also provided.

1.
J.
Kushibiki
and
N.
Chubachi
,
IEEE Trans. Sonics Ultrason.
SU-32
,
189
(
1985
).
2.
J.
Kushibiki
,
Y.
Ono
,
Y.
Ohashi
, and
M.
Arakawa
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
99
(
2002
).
3.
J.
Kushibiki
,
T.
Kobayashi
,
H.
Ishiji
, and
C. K.
Jen
,
J. Appl. Phys.
85
,
7863
(
1999
).
4.
J.
Kushibiki
,
Y.
Ohashi
, and
Y.
Ono
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1068
(
2000
).
5.
J.
Kushibiki
,
T.
Okuzawa
,
J.
Hirohashi
, and
Y.
Ohashi
,
J. Appl. Phys.
87
,
4395
(
2000
).
6.
J.
Kushibiki
,
Y.
Ohashi
, and
T.
Ujiie
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
454
(
2002
).
7.
J.
Kushibiki
,
I.
Takanaga
,
M.
Arakawa
, and
T.
Sannomiya
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
1315
(
1999
).
8.
J.
Kushibiki
,
I.
Takanaga
,
S.
Komatsuzaki
, and
T.
Ujiie
,
J. Appl. Phys.
91
,
6341
(
2002
).
9.
J.
Kushibiki
,
Y.
Ohashi
, and
N.
Mishima
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
544
(
2003
).
10.
J.
Kushibiki
,
Y.
Ohashi
, and
M.
Mochizuki
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
748
(
2004
).
11.
J.
Kushibiki
,
Y.
Ohashi
,
Y.
Ono
, and
T.
Sasamata
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
905
(
2002
).
12.
A. A.
Ballman
,
J. Am. Ceram. Soc.
48
,
112
(
1965
).
13.
J. R.
Carruthers
,
G. E.
Peterson
,
M.
Grasso
, and
P. M.
Bridenbaugh
,
J. Appl. Phys.
42
,
1846
(
1971
).
14.
K.
Yamada
,
H.
Takemura
,
Y.
Inoue
,
T.
Omi
, and
S.
Matsumura
,
Jpn. J. Appl. Phys., Suppl.
26
,
219
(
1987
).
15.
W. L.
Bond
,
Acta Crystallogr.
13
,
814
(
1960
).
16.
J.
Kushibiki
,
J.
Hirohashi
, and
M.
Arakawa
(unpublished).
17.
J.
Kushibiki
and
M.
Arakawa
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
421
(
1998
).
18.
J.
Kushibiki
,
M.
Arakawa
, and
R.
Okabe
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
827
(
2002
).
19.
Y.
Ohashi
and
J.
Kushibiki
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
686
(
2004
).
20.
A. J.
Slobodnic
, Jr.
,
E. D.
Conway
, and
R. T.
Delmonico
, Technical Report No. AFCRL-TR-73-0597,
1973
(unpublished).
21.
J. J.
Campbell
and
W. R.
Jones
,
IEEE Trans. Sonics Ultrason.
SU-17
,
71
(
1970
).
22.
H. M.
O’bryan
,
P. K.
Gallagher
, and
C. D.
Brandle
,
J. Am. Ceram. Soc.
68
,
493
(
1985
).
23.
S.
Matsumura
,
J. Cryst. Growth
51
,
41
(
1981
).
24.
J.
Trauth
and
B. C.
Grabmaier
,
J. Cryst. Growth
112
,
451
(
1991
).
You do not currently have access to this content.