Two-dimensional simulations are performed to investigate the impact of grain boundaries (GBs) on Cu(In,Ga)Se2 (CIGS) solar-cell performance. Charged defect levels and compositional variations at GBs are considered. Neutral grain boundaries in the CIGS layer are predicted to be most detrimental if they are parallel to the main junction and located within the depletion region. For columnar GBs with a grain size near 1μm, the effective grain-boundary recombination velocity must be less than 104cms to allow for record-efficiency devices. The majority-hole repulsion (additional donors at the GB) and the resulting band bending have a small effect on current collection but substantially lower the open-circuit voltage, and the combined effect is generally a lowering of the solar-cell efficiency. Minority-electron repulsion (additional acceptors at the GB) will partially mitigate GB recombination. A downshift of the valence-band energy, as predicted by the observed Cu depletion at CIGS GBs, can effectively block holes from the GB region and allow efficiencies comparable to GB-free material.

1.
K.
Ramanathan
 et al,
Prog. Photovoltaics
11
,
225
(
2003
).
2.
U.
Rau
and
H. W.
Schock
,
Appl. Phys. A: Mater. Sci. Process.
69
,
131
(
1999
).
3.
S. B.
Zhang
,
S.-H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
4.
D.
Rudmann
,
A. F.
da Cunha
,
M.
Kaelin
,
F.
Kurdesau
,
H.
Zogg
, and
A. N.
Tiwari
,
Appl. Phys. Lett.
84
,
1129
(
2004
).
5.
C.-S.
Jiang
,
R.
Noufi
,
J. A.
AbuShama
,
K.
Ramanathan
,
H. R.
Moutinho
,
J.
Pankow
, and
M. M.
Al-Jassim
,
Appl. Phys. Lett.
84
,
3477
(
2004
).
6.
C.-S.
Jiang
,
R.
Noufi
,
K.
Ramanathan
,
J. A.
AbuShama
,
H. R.
Moutinho
, and
M. M.
Al-Jassim
,
Appl. Phys. Lett.
85
,
2625
(
2004
).
7.
S.
Schuler
,
S.
Nishiwaki
,
J.
Beckman
,
N.
Rega
,
S.
Brehme
,
S.
Siebentritt
, and
M. C.
Lux-Steiner
,
Proceedings of the 29th IEEE Photovoltaic Specialist Conference
(
IEEE
, Piscataway,
2002
).
8.
S.
Sadewasser
,
T.
Glatzel
,
S.
Schuler
,
S.
Nishiwaki
,
R.
Kaigawa
, and
M. C.
Lux-Steiner
,
Thin Solid Films
431–432
,
257
(
2003
).
9.
D.
Fuertes Marrón
,
T.
Glatzel
,
A.
Meeder
,
T.
Schedel-Niedrig
,
S.
Sadewasser
, and
M. C.
Lux-Steiner
,
Appl. Phys. Lett.
85
,
3755
(
2004
).
10.
C.
Persson
and
A.
Zunger
,
Phys. Rev. Lett.
91
,
266401
(
2003
).
11.
D.
Schmid
,
M.
Ruckh
, and
H. W.
Schock
,
Sol. Energy Mater. Sol. Cells
41–42
,
281
(
1996
).
12.
M.
Hetzer
,
Y. M.
Strzhemechny
,
M.
Gao
,
L. J.
Brillson
,
M. A.
Contreras
,
C.
Persson
, and
A.
Zunger
,
Appl. Phys. Lett.
86
,
162105
(
2005
).
13.
W. K.
Metzger
and
M.
Gloeckler
,
J. Appl. Phys.
98
,
063701
(
2005
).
14.
J. Y. W.
Seto
,
J. Appl. Phys.
46
,
5247
(
1975
).
15.
H. C.
Card
and
E. S.
Yang
,
IEEE Trans. Electron Devices
24
,
397
(
1977
).
16.
A. K.
Ghosh
,
C.
Fishman
, and
T.
Feng
,
J. Appl. Phys.
51
,
446
(
1979
).
17.
N. C.
Halder
and
T. R.
Williams
,
Sol. Cells
8
,
201
(
1983
).
18.
S.
Banerjee
and
H.
Saha
,
Sol. Cells
28
,
77
(
1990
).
19.
J.
Dugas
and
J.
Oualid
,
Sol. Cells
20
,
167
(
1987
).
20.
S.
Elnahwy
and
N.
Adeeb
,
J. Appl. Phys.
64
,
5214
(
1988
).
21.
N. C.
Halder
and
T. R.
Williams
,
Sol. Cells
85
,
225
(
1983
).
22.
M. A.
Green
,
Solid-State Electron.
21
,
1139
(
1978
).
23.
M. A.
Green
,
J. Appl. Phys.
80
,
1515
(
1996
).
24.
S. A.
Edmiston
,
G.
Heiser
,
A. B.
Sproul
, and
M. A.
Green
,
J. Appl. Phys.
80
,
6783
(
1996
).
25.
K.
Kurobe
,
Y.
Ishikawa
,
Y.
Yamamoto
,
T.
Fuyuki
, and
H.
Matsunami
,
Sol. Energy Mater. Sol. Cells
65
,
201
(
2001
).
26.
T.
Matsui
,
T.
Yamazaki
,
A.
Nagatani
,
K.
Kino
,
H.
Takatura
, and
Y.
Hamakawa
,
Sol. Energy Mater. Sol. Cells
65
,
87
(
2001
).
27.
T.
Fujisaki
,
A.
Yamada
, and
M.
Konagai
,
Sol. Energy Mater. Sol. Cells
74
,
331
(
2002
).
28.
H.
Takakura
and
Y.
Hamakawa
,
Sol. Energy Mater. Sol. Cells
74
,
479
(
2002
).
29.
A.
Zerga
,
E.
Christoffel
, and
A.
Slaoui
,
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
(Japan,
2003
), pp.
1053
1056
.
30.
Y.
Ishikawa
,
Y.
Yamamoto
,
T.
Hatayama
,
Y.
Uraoka
, and
T.
Fuyuki
,
Jpn. J. Appl. Phys., Part 1
40
,
6783
(
2001
).
31.
K.
Taretto
,
U.
Rau
, and
J. H.
Werner
,
Thin Solid Films
480–481
,
8
(
2005
).
32.
M.
Gloeckler
,
A. L.
Fahrenbruch
, and
J. R.
Sites
,
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
(Japan,
2003
), pp.
491
494
.
33.
M.
Gloeckler
and
J. R.
Sites
,
Thin Solid Films
480–481
,
241
(
2005
).
34.
K.
Emery
,
Handbook of Photovoltaic Science and Engineering
, edited by
A.
Luque
and
S.
Hegedus
(
Wiley
, Chichester,
2003
), pp.
702
711
[based on
R.
Bird
,
R.
Hulstrom
, and
C.
Riordan
,
Sol. Cells
14
,
193
(
1985
)].
35.
P. D.
Paulson
,
R. W.
Birkmire
, and
W. N.
Shafarman
,
J. Appl. Phys.
94
,
879
(
2003
).
36.
ISE Integrated Systems Engineering Release 9.5 -Part 15: DESSIS, ISE Integrated Systems Engineering AG, Zurich, Switzerland (
2004
).
37.
S. S.
Hegedus
and
W. N.
Shafarman
,
Prog. Photovoltaics
12
,
155
(
2004
).
38.

This calculation assumed no collection from the window or buffer layer, perfect absorption within the space-charge region, and bulk absorption based on the 2D analytical model. A one-dimensional approximation (“effective lifetime”) would overestimate the effect of SGB enhancement because carrier depletion at the GB is neglected in one dimension (1D).

You do not currently have access to this content.