We have probed the luminescence properties of a wide-band-gap, direct band-gap optoelectronic material, grown on closely lattice-matched silicon substrates, namely, γ-CuCl on Si. This material system is compatible with current Si or GaAs-based electronic/optoelectronic technologies. Polycrystalline epitaxy of CuCl can be controlled such that it maintains an orientation similar to the underlying Si substrate. Importantly, chemical interactions between CuCl and Si are eliminated. Photoluminescence and cathodoluminescence results for CuCl, deposited on either Si (100) or Si (111), reveal a strong room-temperature Z3 excitonic emission at 387nm. We have developed and demonstrated the room-temperature operation of an ultraviolet electroluminescent device fabricated by the growth of γ-CuCl on Si. The application of an electrical potential difference across the device results in an electric field, which promotes light emission through hot-electron impact excitation of electron-hole pairs in the γ-CuCl. Since the excitonic binding energy in this direct band-gap material is of the order of 190meV at room temperature, the electron-hole recombination and subsequent light emission at 380 and 387nm are mediated by excitonic effects.

1.
B.
Metzger
,
Compound Semicond.
7
,
57
(
2001
).
2.
S.
Nakamura
and
G.
Fasol
,
The Blue Laser Diode: GaN Based Light Emitters and Lasers
(
Springer
, Berlin,
1997
).
3.
K.
Itaya
 et al,
Jpn. J. Appl. Phys., Part 2
35
,
L1315
(
1996
).
4.
G. E.
Bulman
 et al,
Electron. Lett.
33
,
1556
(
1997
).
6.
S.
Nakamura
 et al,
Appl. Phys. Lett.
72
,
211
(
1998
).
7.
T. S.
Zheleva
,
O.-H.
Nam
,
M. D.
Bremser
, and
R. F.
Davis
,
Appl. Phys. Lett.
71
,
2472
(
1997
).
8.
J. A.
Freitas
,
O.-H.
Nam
,
R. F.
Davis
,
G. V.
Saparin
, and
S. K.
Obyden
,
Appl. Phys. Lett.
72
,
2990
(
1998
).
9.
X.
Li
,
S. G.
Bishop
, and
J. J.
Coleman
,
Appl. Phys. Lett.
73
,
1179
(
1998
).
10.
H.
Marchand
 et al,
MRS Internet J. Nitride Semicond. Res.
4
,
2
(
1999
);
11.
P.
Kozodoy
,
J. P.
Ibbetson
,
H.
Marchand
,
P. T.
Fini
,
S.
Keller
,
J. S.
Speck
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Appl. Phys. Lett.
73
,
975
(
1998
).
12.
T.
Mukai
,
K.
Takekawa
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 2
37
,
L839
(
1998
).
13.
C.
Sasaoka
,
H.
Sunakawa
,
A.
Kimura
,
M.
Nido
,
A.
Usui
, and
A.
Sakai
,
J. Cryst. Growth
189/190
,
61
(
1998
).
14.
T. S.
Zheleva
,
S. A.
Smith
,
D. B.
Thomson
,
K. J.
Linthicum
,
P.
Rajagopal
, and
R. F.
Davis
,
J. Electron. Mater.
28
,
L5
(
1999
).
15.
T.
Gehrke
,
K. J.
Linthicum
,
D. B.
Thomson
,
P.
Rajagopal
,
A. D.
Batchelor
, and
R. F.
Davis
,
MRS Internet J. Nitride Semicond. Res.
4S1
,
G3
2
(
1999
);
16.
A.
Osinsky
 et al,
Appl. Phys. Lett.
72
,
551
(
1998
).
17.
K. S.
Stevens
,
M.
Kinniburgh
, and
R.
Beresford
,
Appl. Phys. Lett.
66
,
3518
(
1995
).
18.
T. L.
Chu
,
J. Electrochem. Soc.
118
,
1200
(
1971
).
19.
H. M.
Manasevit
,
F. M.
Erdmann
, and
W. I.
Simpson
,
J. Electrochem. Soc.
118
,
1864
(
1971
).
20.
T.
Takeuchi
,
H.
Amano
,
K.
Hiramatsu
,
N.
Sawaki
, and
I.
Akasaki
,
J. Cryst. Growth
115
,
634
(
1991
).
21.
A. J.
Steckl
,
J.
Devrajan
,
C.
Tran
, and
R. A.
Stall
,
Appl. Phys. Lett.
69
,
2264
(
1996
).
22.
S.
Guha
and
N. A.
Bojarczuk
,
Appl. Phys. Lett.
72
,
415
(
1998
).
23.
P.
Kung
,
A.
Saxler
,
X.
Zhang
,
D.
Walker
,
T. C.
Wang
,
I.
Ferguson
, and
M.
Razeghi
,
Appl. Phys. Lett.
66
,
2958
(
1995
).
24.
J. W.
Yang
 et al,
Appl. Phys. Lett.
69
,
3566
(
1996
).
25.
N. P.
Kobayashi
,
P. D.
Dapkus
,
W. J.
Choi
,
A. E.
Bond
,
X.
Zhang
, and
D. H.
Rich
,
Appl. Phys. Lett.
71
,
3569
(
1997
).
26.
Y.
Nakada
,
I.
Aksenov
, and
H.
Okumura
,
Appl. Phys. Lett.
73
,
827
(
1998
).
27.
M.
Nakayama
,
A.
Soumura
,
K.
Hamasaki
,
H.
Takeuchi
, and
H.
Nishimura
,
Phys. Rev. B
55
,
10099
(
1997
).
28.
M.
Nakayama
,
H.
Ichida
, and
H.
Nishimura
,
J. Phys.: Condens. Matter
11
,
7653
(
1999
).
29.
B.
Wyncke
and
F.
Bréhat
,
J. Phys.: Condens. Matter
12
,
3461
(
2000
).
30.
H.
Heireche
,
B.
Bouhafs
,
H.
Aourag
,
M.
Ferhat
, and
M.
Certier
,
J. Phys. Chem. Solids
59
,
997
(
1998
).
31.
B.
Bouhafs
,
H.
Heirache
,
W.
Sekkal
,
H.
Aourag
, and
M.
Certier
,
Phys. Lett. A
240
,
257
(
1998
).
32.
Y.
Masumoto
and
S.
Ogasawara
,
J. Lumin.
87–89
,
360
(
2000
).
33.
M.
Ikezawa
and
Y.
Masumoto
,
J. Lumin.
87–89
,
482
(
2000
).
34.
J.
Zhao
,
M.
Ikezawa
,
A. V.
Fedorov
, and
Y.
Masumoto
,
J. Lumin.
87–89
,
525
(
2000
).
35.
A.
Yanase
and
Y.
Segawa
,
Surf. Sci.
329
,
219
(
1995
).
36.
A.
Yanase
and
Y.
Segawa
,
Surf. Sci.
367
,
L1
(
1996
).
37.
A.
Yanase
and
Y.
Segawa
,
Surf. Sci.
357–358
,
885
(
1996
).
38.
Q.
Guo
,
L.
Gui
, and
N.
Wu
,
Appl. Surf. Sci.
99
,
229
(
1996
).
39.
C. T.
Lin
,
E.
Schönherr
,
A.
Schmeding
,
T.
Ruf
,
A.
Göbel
, and
M.
Cardona
,
J. Cryst. Growth
167
,
612
(
1996
).
40.
N.
Nishida
,
K.
Saiki
, and
A.
Koma
,
Surf. Sci.
324
,
149
(
1995
).
41.
C.
Schwab
and
A.
Goltzené
,
Prog. Cryst. Growth Charact.
5
,
233
(
1982
).
42.
H. G.
Grahn
,
Introduction to Semiconductor Physics
(
World Scientific
, Singapore,
1999
).
43.
NIST Chemistry Webbook
, http://webbook.nist.gov
44.
L.
O’Reilly
 et al,
J. Mater. Sci.: Mater. Electron.
16
,
415
(
2005
).
45.
A.
Goldmann
,
Phys. Status Solidi B
81
,
9
(
1977
).
46.
G.
Suyal
,
M.
Mennig
, and
H.
Schmidt
,
J. Mater. Chem.
10
,
3136
(
2002
).
47.
D. K.
Shuh
and
R. S.
Williams
,
Phys. Rev. B
44
,
5827
(
1991
).
48.
M.
Certier
,
C.
Wecker
, and
S.
Nikitine
,
J. Phys. Chem. Solids
30
,
2135
(
1969
).
49.
T.
Goto
,
T.
Takahashi
, and
M.
Ueta
,
J. Phys. Soc. Jpn.
24
,
314
(
1968
).
You do not currently have access to this content.