We derive higher-order macroscopic transport models for semiconductor device simulation from Boltzmann’s transport equation using the method of moments. To obtain a tractable equation set suitable for numerical implementation the validity of the diffusion limit will be assumed which removes the convective terms from the equation system. The infinite hierarchy of equations is then truncated at the orders two (drift-diffusion model), four (energy-transport model), and six. Nonparabolicity correction factors are included in the streaming terms. Closure relations for the highest-order moments are obtained from a cold Maxwell distribution (drift-diffusion) and a heated Maxwell distribution (energy-transport). For the six moments model this issue is more complicated. In particular, this closure relation is identified to be crucial both in terms of accuracy and in terms of numerical stability. Various possible closure relations are discussed and compared. In addition to the closure of the highest-order moment, various transport parameters such as mobilities and relaxation times appear in the models and need to be accurately modeled. Particularly for higher-order transport models this is a complicated issue and since the analytical models used in our previous attempts did not deliver satisfactory results we extract all these parameters using homogeneous Monte Carlo simulations. Since all macroscopic transport models are based on rather stringent assumptions a practical evaluation is mandatory. Therefore, the proposed six moments model, a corresponding energy-transport model, and the drift-diffusion model are carefully compared to self-consistent Monte Carlo simulations.

1.
M.
Lundstrom
,
Fundamentals of Carrier Transport
(
Cambridge University Press
, Cambridge,
2000
).
2.
M.
Vecchi
and
M.
Rudan
,
IEEE Trans. Electron Devices
45
,
230
(
1998
).
3.
C.-K.
Lin
 et al., in
Proceedings of the Simulation of Semiconductor Processes and Devices
(
Kyoto
, Japan,
1999
), pp.
167
170
.
4.
S.
Selberherr
,
Analysis and Simulation of Semiconductor Devices
(
Springer
, Wien–New York,
1984
).
5.
T.
Grasser
,
T.-W.
Tang
,
H.
Kosina
, and
S.
Selberherr
,
Proc. IEEE
91
,
251
(
2003
).
6.
7.
K.
Bløtekjær
,
IEEE Trans. Electron Devices
17
,
38
(
1970
).
8.
D.
Caughey
and
R.
Thomas
,
Proc. IEEE
52
,
2192
(
1967
).
9.
S.
Selberherr
,
W.
Hänsch
,
M.
Seavey
, and
J.
Slotboom
,
Solid-State Electron.
33
,
1425
(
1990
).
10.
S.-C.
Lee
and
T.-W.
Tang
,
Solid-State Electron.
35
,
561
(
1992
).
11.
G.
Baccarani
and
M.
Wordeman
,
Solid-State Electron.
28
,
407
(
1985
).
12.
W.
Hänsch
,
The Drift Diffusion Equation and its Application in MOSFET Modeling
(
Springer
, Wien–New York,
1991
).
13.
T.-W.
Tang
,
S.
Ramaswamy
, and
J.
Nam
,
IEEE Trans. Electron Devices
40
,
1469
(
1993
).
14.
R.
Thoma
 et al.,
IEEE Trans. Electron Devices
38
,
1343
(
1991
).
15.
C.
Jungemann
and
B.
Meinerzhagen
,
Hierarchical Device Simulation: The Monte Carlo Perspective
(
Springer
, Wien–New York,
2003
).
16.
P.
Markowich
,
C.
Ringhofer
, and
C.
Schmeiser
,
Semiconductor Equations
(
Springer
, Wien–New York,
1990
).
17.
M.
Rudan
and
F.
Odeh
,
Compel
5
,
149
(
1986
).
18.
A.
Forghieri
 et al.,
IEEE Trans. Comput.-Aided Des.
7
,
231
(
1988
).
19.
W.-S.
Choi
 et al.,
IEEE Trans. Comput.-Aided Des.
13
,
899
(
1994
).
20.
Q.
Lin
,
N.
Goldsman
, and
G.-C.
Tai
,
Solid-State Electron.
37
,
359
(
1994
).
21.
T.-W.
Tang
and
M.-K.
Ieong
,
IEEE Trans. Comput.-Aided Des.
14
,
1309
(
1995
).
22.
J.-G.
Ahn
 et al.,
IEEE Electron Device Lett.
15
,
348
(
1994
).
23.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
,
J. Appl. Phys.
90
,
6165
(
2001
).
24.
K.
Hasnat
 et al.,
IEEE Trans. Electron Devices
44
,
129
(
1997
).
25.
A.
Gehring
,
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
,
J. Appl. Phys.
92
,
6019
(
2002
).
26.
C.
Jungemann
 et al.,
Solid-State Electron.
42
,
647
(
1998
).
27.
K.
Sonoda
 et al.,
J. Appl. Phys.
80
,
5444
(
1996
).
28.
T.
Grasser
,
H.
Kosina
,
M.
Gritsch
, and
S.
Selberherr
,
J. Appl. Phys.
90
,
2389
(
2001
).
29.
T.
Grasser
,
H.
Kosina
,
C.
Heitzinger
, and
S.
Selberherr
,
Appl. Phys. Lett.
80
,
613
(
2002
).
30.
A. M.
Anile
,
V.
Romano
, and
G.
Russo
,
SIAM J. Appl. Math.
61
,
74
(
2000
).
31.
M.
Stettler
,
M.
Alam
, and
M.
Lundstrom
,
IEEE Trans. Electron Devices
40
,
733
(
1993
).
32.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
, in
Proceedings of the Simulation of Semiconductor Processes and Devices
(
IEEE Operations Center
, Piscataway, NJ,
2003
), pp.
63
66
.
33.
A.
Anile
and
O.
Muscato
,
Phys. Rev. B
51
,
16728
(
1995
).
34.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
, in
Proceedings of the Simulation of Semiconductor Processes and Devices
(
Springer
, Wien–New York,
2004
), pp.
109
112
.
35.
D.
Ferry
,
Semiconductors
(
Macmillan
, New York,
1991
).
36.
C.
Jacoboni
and
P.
Lugli
,
The Monte Carlo Method for Semiconductor Device Simulation
(
Springer
, Wien–New York,
1989
).
37.
VMC 1.0 User’s Guide
, Institut für Mikroelektronik, Technische Universität Wien, Austria,
2003
, http://www.iue.tuwien.ac.at/software/vmc
38.
A.
Anile
,
W.
Allegretto
, and
C.
Ringhofer
,
Mathematical Problems in Semiconductor Physics
(
Springer
, Wien–New York,
1988
).
39.
C.
Ringhofer
,
C.
Schmeiser
, and
A.
Zwirchmayer
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
39
,
1078
(
2001
).
40.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
, in
Advanced Device Modeling and Simulation
, edited by
T.
Grasser
(
World Scientific
, Singapore,
2003
), pp.
173
201
.
41.
D.
Woolard
 et al.,
Phys. Rev. B
44
,
11119
(
1991
).
42.
T.
Grasser
,
H.
Kosina
,
C.
Heitzinger
, and
S.
Selberherr
,
J. Appl. Phys.
91
,
3869
(
2002
).
43.
T.
Grasser
 et al., in
Proceedings of the 31th European Solid-State Device Research Conference
, edited by
H.
Ryssel
,
G.
Wachutka
, and
H.
Grünbacher
(
Frontier Group
, Nuremberg, Germany,
2001
), pp.
215
218
.
44.
T.
Bordelon
,
X.-L.
Wang
,
C.
Maziar
, and
A.
Tasch
,
Solid-State Electron.
35
,
131
(
1992
).
45.
C.
Levermore
,
J. Stat. Phys.
83
,
1021
(
1996
).
46.
M.
Junk
and
A.
Unterreiter
,
Math. Methods Appl. Sci.
10
,
1001
(
2000
).
47.
K.
Bandyopadhyay
,
K.
Bhattacharyya
, and
A.
Bhattacharya
,
Pramana
54
,
365
(
2000
).
48.
A.
Tagliani
,
Appl. Math. Lett.
16
,
519
(
2003
).
49.
K.
Sonoda
 et al.,
Jpn. J. Appl. Phys., Part 1
35
,
818
(
1996
).
50.
A.
Anile
and
V.
Romano
, Hydrodynamical Modeling of Charge Carrier Transport in Semiconductors, Summer School on Industrial Mathematics, IST Lisboa, Portugal, http://www.dipmat.unict.it/anile/preprint.html,
1999
.
52.
T.-W.
Tang
,
Q.
Cao
, and
J.
Nam
,
Jpn. J. Appl. Phys., Part 1
42
,
2137
(
2003
).
53.
D.
Matz
,
J. Phys. Chem. Solids
28
,
373
(
1967
).
54.
B.
Geurts
,
M.
Nekovee
,
H.
Boots
, and
M. F. H.
Schuurmans
,
J. Appl. Phys.
59
,
1743
(
1991
).
55.
H.
Grad
,
Commun. Pure Appl. Math.
2
,
311
(
1949
).
56.
S.
Seeger
and
K.
Hoffmann
,
Continuum Mech. Thermodyn.
12
,
403
(
2000
).
57.
W.
Dreyer
,
M.
Junk
, and
M.
Kunik
,
Nonlinearity
14
,
881
(
2001
).
58.
M.
Nekovee
,
B.
Geurts
,
H.
Boots
, and
M.
Schuurmans
,
Phys. Rev. B
45
,
6643
(
1992
).
59.
D.
Chen
 et al.,
IEEE Electron Device Lett.
13
,
26
(
1992
).
60.
G.-C.
Rota
, in
Algebraic Combinatorics and Computer Science
(
Springer Italia
, Milan,
2001
), pp.
57
93
.
61.
E.
Wang
,
M.
Stettler
,
S.
Yu
, and
C.
Maziar
, in
Proceedings of the International Workshop on Computational Electronics
(Piscataway, NJ,
1998
), pp.
234
237
.
62.
T.-W.
Tang
, in
Semiconductor TCAD Workshop & Exhibition
(
Hsinchu
, Taiwan,
1999
), pp.
1
19
.
63.
T.-W.
Tang
,
IEEE Trans. Electron Devices
31
,
1912
(
1984
).
64.
B.
Meinerzhagen
and
W.
Engl
,
IEEE Trans. Electron Devices
35
,
689
(
1988
).
65.
R.
Kosik
, dissertation,
Technische Universität Wien
,
2004
, http://www.iue.tuwien.ac.at.
66.
T.
Grasser
,
H.
Kosina
, and
S.
Selberherr
,
Appl. Phys. Lett.
79
,
1900
(
2001
).
You do not currently have access to this content.