A thermal-spike model has been applied to characterize the damage structure of the latent tracks generated by high-energy ion irradiations on LiNbO3 through electron excitation mechanisms. It applies to ions having electronic stopping powers both below and above the threshold value for lattice amorphization. The model allows to estimate the defect concentrations in the heavily damaged (preamorphized) regions that have not reached the threshold for amorphization. They include the halo and tail surrounding the core of a latent track. The existence of the preamorphized regions accounts for a synergy between successive irradiations and predicts a dependence of the amorphization threshold on previous irradiation fluence. The predicted dependence is in accordance with irradiation experiments using N (4.53MeV), O (5.00MeV), F (5.13MeV), and Si (5 and 7.5MeV). For electronic stopping powers above the threshold value the model describes the generation of homogeneous amorphous layers and predicts the propagation of the amorphization front with fluence. A theoretical expression, describing this propagation, has been obtained that is in reasonable agreement with silicon irradiation experiments at 5 and 7.5MeV. The accordance is improved by including in a simple phenomenological way the velocity effect on the threshold. At the highest fluences (or depths) a significant discrepancy appears that may be attributed to the contribution of the nuclear collision damage.

1.
J. K.
Hirvonen
,
Ion Implantation and Ion Beam Processing
(
North Holland
, Amsterdam,
1984
).
2.
F.
Agulló-López
,
C. R. A.
Catlow
, and
P. D.
Townsend
,
Point Defects in Materials
(
Academic
, London,
1988
).
3.
J. F.
Ziegler
,
Ion Implantation Technology
(
North Holland
, Amsterdam,
1992
).
4.
P. D.
Townsend
,
P. J.
Chandler
, and
L.
Zhang
,
Optical Effects of Ion Implantation
(
Cambridge University Press
, Cambridge,
1994
).
5.
E. C. M.
Silk
and
R. S.
Barnes
,
Philos. Mag.
4
,
970
(
1959
).
6.
A.
Sigrist
and
R.
Balzer
,
Helv. Phys. Acta
50
,
49
(
1977
).
7.
R. L.
Fleischer
,
P. B.
Price
, and
R. M.
Walker
,
Nuclear Tracks in Solids
(
University of California Press
, Berkeley,
1975
).
8.
M.
Toulemonde
,
S.
Bouffard
, and
F.
Studer
,
Nucl. Instrum. Methods Phys. Res. B
91
,
108
(
1994
).
9.
R.
Spohr
, in
Ion Tracks and Microtechnology: Basic Principles and Applications
, edited by
K.
Bethge
(
Vieweg
, Braunchsweig,
1990
).
10.
E.
Ferain
and
R.
Legras
,
Nucl. Instrum. Methods Phys. Res. B
174
,
116
(
2001
).
11.
M. E.
Toimil Morales
,
E. M.
Hohberger
,
Ch.
Schaeflein
,
R. H.
Blick
,
R.
Neumann
, and
C.
Trautmann
,
Appl. Phys. Lett.
82
,
2139
(
2003
).
12.
L.
Piraux
,
J. M.
George
,
J. F.
Despres
,
C.
Leroy
,
E.
Ferain
,
R.
Legras
,
K.
Ounajdela
, and
A.
Fert
,
Appl. Phys. Lett.
65
,
2484
(
1994
).
13.
M. S.
Gudiksen
,
J.
Wang
, and
C. M.
Lieber
,
J. Phys. Chem. B
106
,
4036
(
2002
).
14.
M.
Toulemonde
,
C.
Trautmann
,
E.
Balanzat
,
K.
Hjort
, and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
216
,
1
(
2004
).
15.
M. I.
Kaganov
,
I. M.
Lifshitz
, and
L. V.
Tanatarov
,
Sov. Phys. JETP
4
,
173
(
1957
).
16.
G.
Szenes
,
Mater. Sci. Forum
97–99
,
647
(
1992
);
G.
Szenes
,
Nucl. Instrum. Methods Phys. Res. B
122
,
530
(
1997
).
17.
M.
Toulemonde
,
C.
Dufour
, and
E.
Paumier
,
Phys. Rev. B
46
,
14362
(
1992
).
18.
M.
Toulemonde
,
C.
Dufour
, and
E.
Paumier
,
Radiat. Eff. Defects Solids
126
,
201
(
1993
).
19.
20.
Z. G.
Wang
,
Ch.
Dufour
,
E.
Paumier
, and
M.
Toulemonde
,
J. Phys.: Condens. Matter
6
,
6733
(
1994
);
Z. G.
Wang
,
Ch.
Dufour
,
E.
Paumier
, and
M.
Toulemonde
,
J. Phys.: Condens. Matter
7
,
2525
(
1995
);
Z. G.
Wang
,
Ch.
Dufour
,
E.
Paumier
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
115
,
577
(
1996
).
21.
M.
Toulemonde
,
J. M.
Constantini
,
Ch.
Dufour
,
A.
Meftah
,
E.
Paumier
, and
F.
Studer
,
Nucl. Instrum. Methods Phys. Res. B
116
,
37
(
1996
).
22.
M.
Toulemonde
,
Ch.
Dufour
,
Z. G.
Wang
, and
E.
Paumier
,
Nucl. Instrum. Methods Phys. Res. B
112
,
26
(
1996
).
23.
B.
Canut
and
S. M. M.
Ramos
,
Radiat. Eff. Defects Solids
145
,
1
(
1998
).
24.
M.
Toulemonde
,
Ch.
Dufour
,
A.
Meftah
, and
E.
Paumier
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
903
(
2000
).
25.
R.
Kelly
and
A.
Miotello
,
Nucl. Instrum. Methods Phys. Res. B
141
,
49
(
1998
).
26.
M.
Beuve
,
N.
Stolterfoht
,
M.
Toulemonde
,
C.
Trautman
, and
H. M.
Urbassek
,
Phys. Rev. B
68
,
125423
(
2003
).
27.
C.
Trautmann
,
M.
Boccanfuso
,
A.
Benyagoub
,
S.
Klaumunzer
,
K.
Schwartz
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
191
,
144
(
2002
).
28.
E. M.
Bringa
and
R. E.
Johnson
,
Nucl. Instrum. Methods Phys. Res. B
143
,
513
(
1998
).
29.
E. M.
Bringa
,
R. E.
Johnson
, and
M.
Jakas
,
Phys. Rev. B
60
,
15107
(
1999
).
30.
M. M.
Jakas
,
E. M.
Bringa
, and
R. E.
Johnson
,
Phys. Rev. B
65
,
165425
(
2002
).
31.
G. G.
Bentini
 et al,
J. Appl. Phys.
92
,
6477
(
2002
).
32.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
A.
Kling
, and
J. C.
Soares
,
Appl. Phys. A: Mater. Sci. Process.
(in press).
33.
G. G.
Bentini
 et al,
J. Appl. Phys.
96
,
242
(
2004
).
34.
Properties of Lithium Niobate
,
EMIS Datareview Series
, edited by
K. K.
Wong
(
INSPEC
, Exeter,
2002
).
35.
T.
van Dillen
,
A.
Polman
,
W.
Fukarek
, and
A.
van Blaaderen
,
Appl. Phys. Lett.
78
,
910
(
2001
).
36.
J.
Frantz
,
J.
Tarus
,
K.
Nordlund
, and
J.
Keinonen
,
Phys. Rev. B
64
,
125313
(
2001
).
37.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Dover
, New York,
1955
).
38.
D. J. W.
Mous
,
A.
Gottdang
,
R. G.
Haitsma
,
G.
García López
,
A.
Climent-Font
,
F.
Agulló-López
, and
D. O.
Boerma
, in
Application of Accelerators in Research and Industry
, edited by
Jerome L.
Duggan
,
AIP Conf. Proc.
No.
680
(
AIP
, Melville, NY,
2003
), p.
999
.
39.
G. L.
Destefanis
,
G. P.
Gaillard
,
L.
Ligeon
,
S.
Valette
,
B. W.
Farmery
,
P. D.
Townsend
, and
A.
Perez
,
J. Appl. Phys.
50
,
7898
(
1980
).
40.
G.
Szenes
,
Nucl. Instrum. Methods Phys. Res. B
191
,
54
(
2002
).
41.
G.
Szenes
,
F.
Pászti
,
A.
Péter
, and
D.
Fink
,
Nucl. Instrum. Methods Phys. Res. B
191
,
186
(
2002
).
42.
A.
Meftah
,
F.
Brisard
,
J. M.
Constantini
,
M.
Hage-Ali
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Phys. Rev. B
48
,
920
(
1993
).
You do not currently have access to this content.