The large hadron collider (LHC) will allow for collision between two 7TeVc proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B214, 211 (2004)].

2.
D. C.
Wilson
,
C. A.
Wingate
,
J. C.
Goldstein
,
R. P.
Godwin
, and
N. V.
Mokhov
, Proceedings of PAC’93 pp.
3090
3092
(unpublished);
3.
A.
Fasso
 et al, http://arxiv.org/abs/hep-ph/0306267 (unpublished).
4.
V. E.
Fortov
,
B.
Goel
,
C.-D.
Munz
,
A. L.
Ni
,
A.
Shutov
, and
O. Yu.
Vorobiev
,
Nucl. Sci. Eng.
123
,
169
(
1996
).
5.
B.
Goddard
, LHC Project Report No. 672,
2003
(unpublished).
6.
L.
Bruno
and
S.
Peraire
, CERN LHC Project Report No. 196,
1999
(unpublished).
7.
J.
Zazula
and
S.
Peraire
, CERN LHC Project Report No. 112,
1997
(unpublished).
8.
J.
Uythoven
,
R.
Filippini
,
B.
Goddard
,
V.
Kain
,
R.
Schmidt
, and
J.
Wenninger
,
Ninth European Particle Accelerator Conference
,
Lucerne
, Switzerland, July
2004
(unpublished).
9.
J.
Linhard
and
A. H.
Sorensen
,
Phys. Rev. A
53
,
2443
(
1996
).
10.
S.
Datz
,
H. F.
Krause
,
C. R.
Vane
,
H.
Knudsen
,
G.
Grafstroem
, and
R. H.
Schuch
,
Phys. Rev. Lett.
77
,
2925
(
1996
).
11.
A. V.
Bushman
and
V. E.
Fortov
, Sov. Tech. Rev. B Therm. Phys. 1, 219 (1987).
12.
N. A.
Tahir
,
A.
Kozyreva
,
P.
Spiller
,
D. H. H.
Hoffmann
, and
A.
Shutov
,
Phys. Rev. E
63
,
036407
1
(
2001
).
13.
W. F.
Henning
,
Nucl. Instrum. Methods Phys. Res. B
214
,
211
(
2004
).
14.
N. A.
Tahir
,
A.
Kozyreva
,
P.
Spiller
,
D. H. H.
Hoffmann
, and
A.
Shutov
,
Phys. Plasmas
7
,
4379
(
2000
).
15.
N. A.
Tahir
,
A.
Kozyreva
,
P.
Spiller
,
A.
Shutov
, and
D. H. H.
Hoffmann
,
Phys. Plasmas
8
,
611
(
2001
).
16.
N. A.
Tahir
 et al,
Phys. Rev. ST Accel. Beams
6
,
020101
(
2003
).
17.
D. H. H.
Hoffmann
,
V. E.
Fortov
,
I. V.
Lomonosov
,
V.
Mintsev
,
N. A.
Tahir
,
D.
Varentsov
, and
J.
Wieser
,
Phys. Plasmas
9
,
3651
(
2002
).
18.
A. R.
Piriz
,
R. F.
Portugues
,
N. A.
Tahir
, and
D. H. H.
Hoffmann
,
Laser Part. Beams
20
,
427
(
2002
).
19.
M.
Temporal
,
A. R.
Piriz
,
N.
Grandjouan
,
N. A.
Tahir
, and
D. H. H.
Hoffmann
,
Laser Part. Beams
21
,
609
(
2003
).
You do not currently have access to this content.