The crystal structure, microstructure, and magnetic properties for a series of CuFePt bilayer films were investigated. The samples were prepared by depositing a Cu top layer on a highly ordered L10 FePt film. To promote interdiffusion, the bilayer samples were annealed at a temperature Td ranging from 300to800°C. X-ray diffraction data indicate that observable diffusion occurs at 400°C. The maximum coercivity thus obtained is 14.0kOe, which is 24% larger than that of the ordered FePt film without a Cu top layer. The high Hc can be attributed to the diffusion of copper atoms through the grain boundaries of the magnetic films, which may produce extra pinning sites for domain-wall movement. The ΔM data measured from the Henkel plots of annealed CuFePt films change from negative to positive values as Td is raised from 400to800°C. This can result from the effects of demagnetization coupling and exchange coupling and is further explained from the variation of squareness ratios of hysteresis loops.

1.
E. E.
Fullerton
,
D. T.
Margulies
,
M. E.
Schabes
,
M.
Carey
,
B.
Gurney
,
A.
Moser
,
M.
Best
,
G.
Zeltzer
,
K.
Rubin
,
H.
Rosen
, and
M.
Doerner
,
Appl. Phys. Lett.
77
,
3806
(
2000
).
2.
E. N.
Abarra
,
A.
Inomata
,
H.
Sato
,
I.
Okamoto
, and
Y.
Mizoshita
,
Appl. Phys. Lett.
77
,
2581
(
2000
).
3.
C. M.
Kuo
,
P. C.
Kuo
, and
H. C.
Wu
,
J. Appl. Phys.
85
,
2264
(
1999
).
4.
J. P.
Liu
,
Y.
Liu
,
R.
Skomsky
, and
D. J.
Sellmyer
,
IEEE Trans. Magn.
35
,
3241
(
1999
).
5.
B.
Zhang
and
W. A.
Soffa
,
IEEE Trans. Magn.
27
,
5328
(
1991
).
6.
M. F.
Toney
,
W. Y.
Lee
,
J. A.
Hedstrom
, and
A.
Kellock
,
J. Appl. Phys.
93
,
9902
(
2003
).
7.
N.
Qiu
and
J. E.
Wittig
,
J. Appl. Phys.
73
,
6281
(
1993
).
8.
S.
Casey
,
E.
Hill
,
J.
Miles
,
P.
Sivasamy
,
K.
Birtwistal
,
B.
Middleton
,
J.
Chapman
, and
J.
Rose
,
IEEE Trans. Magn.
32
,
3831
(
1996
).
9.
K.
Sato
,
B.
Bian
, and
Y.
Hirotsu
,
J. Appl. Phys.
91
,
8516
(
2002
).
10.
S. W.
Yung
,
Y. H.
Chang
,
T. J.
Lin
, and
M. P.
Hung
,
J. Magn. Magn. Mater.
116
,
411
(
1992
).
11.
J. C.
Shih
,
H. H.
Hsiao
,
J. L.
Tsai
, and
T. S.
Chin
,
IEEE Trans. Magn.
37
,
1280
(
2001
).
12.
J. P.
Liu
,
Y.
Liu
,
C. P.
Luo
,
Z. S.
Shan
, and
D. J.
Sellmyer
,
J. Appl. Phys.
81
,
5644
(
1997
).
13.
Y.
Endo
,
N.
Kikuchi
,
O.
Kitakami
, and
Y.
Shimada
,
J. Appl. Phys.
89
,
7065
(
2001
).
14.
T.
Shima
,
T.
Moriguchi
,
S.
Mitani
, and
K.
Takahashi
,
Appl. Phys. Lett.
80
,
288
(
2002
).
15.
K. M.
Park
,
K. H.
Na
,
J. G.
Na
,
P. W.
Jang
,
H. J.
Kim
, and
S. R.
Lee
,
IEEE Trans. Magn.
38
,
1961
(
2002
).
16.
Y. K.
Takahashi
,
M.
Ohnuma
, and
K.
Hono
,
J. Magn. Magn. Mater.
246
,
259
(
2002
).
17.
T.
Maeda
,
T.
Kai
,
A.
Kikitsu
,
T.
Nagase
, and
J.
Akiyama
,
Appl. Phys. Lett.
80
,
2147
(
2002
).
18.
S. R.
Lee
,
S.
Yang
,
Y. K.
Kim
, and
J. G.
Na
,
Appl. Phys. Lett.
78
,
4001
(
2001
).
19.
X.
Sun
,
S.
Kang
,
J. W.
Harrell
,
D. E.
Nikles
,
Z. R.
Dai
,
J.
Li
, and
Z. L.
Wang
,
J. Appl. Phys.
93
,
7337
(
2003
).
20.
C. L.
Platt
,
K. W.
Wierman
,
E. B.
Svedberg
,
R.
van de Veerdonk
,
J. K.
Howard
,
A. G.
Roy
, and
D. E.
Laughlin
,
J. Appl. Phys.
92
,
6104
(
2002
).
21.
D.
Ravelosona
,
C.
Chappert
,
V.
Mathet
, and
H.
Bernas
,
Appl. Phys. Lett.
76
,
236
(
2000
).
22.
C. H.
Lai
,
C. H.
Yang
, and
C. C.
Chiang
,
Appl. Phys. Lett.
83
,
4550
(
2003
).
23.
R. A.
Ristau
,
K.
Barmak
,
L. H.
Lewis
,
K. R.
Coffey
, and
J. K.
Howard
,
J. Appl. Phys.
86
,
4527
(
1999
).
24.
S.
Jeong
,
Y. N.
Hsu
,
D. E.
Laughlin
, and
M. E.
McHenry
,
IEEE Trans. Magn.
37
,
1299
(
2001
).
25.
M. H.
Hong
,
K.
Hono
, and
M.
Watanabe
,
J. Appl. Phys.
84
,
4403
(
1998
).
26.
J. P.
Attane
,
Y.
Samson
,
A.
Marty
,
D.
Halley
, and
C.
Beigne
,
Appl. Phys. Lett.
79
,
794
(
2001
).
27.
J. P.
Liu
,
C. P.
Luo
,
Y.
Liu
, and
D. J.
Sellmyer
,
Appl. Phys. Lett.
72
,
483
(
1998
).
28.
M.
Watanabe
,
M.
Masumoto
,
D. H.
Ping
, and
K.
Hono
,
Appl. Phys. Lett.
76
,
3971
(
2000
).
29.
C. M.
Kuo
and
P. C.
Kuo
,
J. Appl. Phys.
87
,
419
(
2000
).
30.
C. P.
Luo
and
D. J.
Sellmyer
,
Appl. Phys. Lett.
75
,
3162
(
1999
).
31.
C. P.
Luo
,
S. H.
Liou
, and
D. J.
Sellmyer
,
J. Appl. Phys.
87
,
6941
(
2000
).
32.
C. P.
Luo
,
S. H.
Liou
,
L.
Gao
,
Y.
Liu
, and
D. J.
Sellmyer
,
Appl. Phys. Lett.
77
,
2225
(
2000
).
33.
M. G.
Kim
,
S. C.
Shin
, and
K.
Kang
,
Appl. Phys. Lett.
80
,
3802
(
2002
).
34.
B.
Bian
,
K.
Sato
,
Y.
Hirotsu
, and
A.
Makino
,
Appl. Phys. Lett.
75
,
3686
(
1999
).
35.
S.
Jeong
,
T.
Ohkubo
,
A. G.
Roy
,
D. E.
Laughlin
, and
M. E.
McHenry
,
J. Appl. Phys.
91
,
6863
(
2002
).
36.
F. T.
Yuan
,
S. K.
Chen
,
W. C.
Chang
, and
Lance
Horng
,
Appl. Phys. Lett.
85
,
15
(
2004
);
F. T.
Yuan
,
S. K.
Chen
,
W. C.
Chang
, and
Lance
Horng
,
Appl. Phys. Lett.
85
,
3163
(
2004
).
37.
S. K.
Chen
,
F. T.
Yuan
,
W. C.
Chang
, and
T. S.
Chin
,
J. Magn. Magn. Mater.
239
,
471
(
2002
).
38.
Robert E.
Reed-Hill
and
Reza
Abbaschian
,
Physical Metallurgy Principles
, 3rd ed. (
PWS
, New York,
1994
), Chap. 12.
39.
D. L.
Smith
,
Thin-Film Deposition Principles and Practice
(
McGraw–Hill
, New York,
1999
), Chap. 5.
40.
E. F.
Kneller
and
R.
Hawig
,
IEEE Trans. Magn.
27
,
3588
(
1992
).
41.
H.
Zeng
,
J.
Li
,
Z. L.
Wang
,
J. P.
Liu
, and
S.
Sun
,
IEEE Trans. Magn.
38
,
2598
(
2002
).
42.
E. C.
Stoner
and
E. P.
Wohlfarth
,
Proc. R. Soc. London, Ser. A
240
,
599
(
1948
).
43.
E. P.
Wohlfarth
,
J. Appl. Phys.
29
,
595
(
1958
).
44.
P. E.
Kelly
,
K.
O’Grady
,
P. I.
Mayo
, and
R. W.
Chantrell
,
IEEE Trans. Magn.
25
,
3881
(
1989
).
You do not currently have access to this content.