We report on experimental and theoretical investigation of thermal conduction in AlxGa1xN alloys. A focus of this study is on understanding the effect of the Al mass fraction x and temperature on thermal conductivity in AlxGa1xN thin films. The thermal conductivity of a set of AlxGa1xN thin films as well as a pure GaN sample was measured using the differential 3ω technique in the temperature range from 80 to 400 K. Application of the virtual-crystal model allowed us to elucidate the strength of the mass-difference and strain-field-difference phonon scattering in AlxGa1xN alloy system. The obtained thermal-conductivity temperature dependence indicates the high degree of disorder in the system. The measured variation of the thermal conductivity with the Al fraction x is in good agreement with the theory predictions. The measured data and calculation procedure are useful for evaluating the self-heating effect in AlxGa1xN/GaN heterostructure field-effect transistors and for the device structure optimization.

1.
A.
Balandin
,
S. V.
Morozov
,
S.
Cai
,
R.
Li
,
K. L.
Wang
,
G.
Wijeratne
, and
C. R.
Viswanathan
,
IEEE Trans. Microwave Theory Tech.
47
,
1413
(
1999
).
2.
M. E.
Levinshtein
,
S. L.
Rumyantsev
,
R.
Gaska
,
J. W.
Yang
, and
M. S.
Shur
,
Appl. Phys. Lett.
73
,
1089
(
1998
).
3.
V. O.
Turin
and
A. A.
Balandin
,
Electron. Lett.
40
,
81
(
2004
).
4.
Y.
Wu
,
B. P.
Keller
,
S.
Keller
,
J. J.
Xu
,
B. J.
Thibeault
,
S. P.
Denbaars
, and
U. K.
Mishra
,
IEICE Trans. Electron.
E82-C
,
1895
(
1999
).
5.
S.
Nuttinck
,
R.
Mukhopadhyay
,
C.
Loper
,
S.
Singhal
,
M.
Harris
, and
J.
Laskar
,
presented at European Microwave Week 2004
, Amsterdam, The Netherlands,
2004
(Unpublished).
6.
M.
Kuball
,
S.
Rajasingam
,
A.
Sarua
,
M. J.
Uren
,
T.
Martin
,
B. T.
Hughes
,
K. P.
Hilton
, and
R. S.
Balmer
,
Appl. Phys. Lett.
82
,
124
(
2003
).
7.
L. F.
Eastman
 et al,
IEEE Trans. Electron Devices
48
,
479
(
2001
);
R.
Gaska
,
A.
Osinsky
,
J. W.
Yang
, and
M. S.
Shur
,
IEEE Electron Device Lett.
19
,
89
(
1998
).
8.
C.-Y.
Lou
,
H.
Marchand
,
D. R.
Clarke
, and
S. P.
Denbaars
,
Appl. Phys. Lett.
75
,
4151
(
1999
).
9.
D. I.
Florescu
,
V. M.
Asnin
,
F. H.
Pollak
,
A. M.
Jones
,
J. C.
Ramer
,
M. J.
Schurman
, and
I.
Ferguson
,
Appl. Phys. Lett.
77
,
1464
(
2000
).
10.
B. C.
Daly
,
H. J.
Maris
,
A. V.
Numikko
,
M.
Kuball
, and
J.
Han
,
J. Appl. Phys.
92
,
3820
(
2002
).
11.
D.
Kotchetkov
,
J.
Zou
,
A. A.
Balandin
,
D. I.
Florescu
, and
F. H.
Pollak
,
Appl. Phys. Lett.
79
,
4316
(
2001
).
12.
J.
Zou
,
D.
Kotchetkov
,
A. A.
Balandin
,
D. I.
Florescu
, and
F. H.
Pollak
,
J. Appl. Phys.
92
,
2534
(
2002
).
13.
T. A.
Eckhause
,
Ö.
Süzer
,
Ç.
Kurdak
,
F.
Yun
, and
H.
Morkoç
,
Appl. Phys. Lett.
82
,
3035
(
2003
);
K. A.
Filippov
and
A. A.
Balandin
,
MRS Internet J. Nitride Semicond. Res.
8
,
4
(
2003
).
14.
O.
Ambacher
 et al,
J. Appl. Phys.
85
,
3222
(
1999
).
15.
J. P.
Ibbetson
,
P. T.
Fini
,
K. D.
Ness
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
,
Appl. Phys. Lett.
77
,
250
(
2000
).
16.
A.
Balandin
,
S.
Morozov
,
G.
Wijeratne
,
S. J.
Cai
,
R.
Li
,
J.
Li
,
K. L.
Wang
,
C. R.
Viswanathan
, and
Y.
Dubrovskii
,
Appl. Phys. Lett.
75
,
2064
(
1999
).
17.
18.
M. A.
Afromowitz
,
J. Appl. Phys.
44
,
1292
(
1973
).
19.
H.
Stohr
and
W.
Klemm
,
Z. Anorg. Allg. Chem.
241
,
305
(
1954
).
20.
W. L.
Liu
and
A. A.
Balandin
,
Appl. Phys. Lett.
85
,
5230
(
2004
).
21.
D. I.
Florescu
,
V. M.
Asnin
,
F. H.
Pollak
,
R. J.
Molnar
, and
C. E. C.
Wood
,
J. Appl. Phys.
88
,
3295
(
2000
).
22.

It should be pointed out that in the channel layer of the AlGaN/GaN HFET the local electronic thermal conductivity might be appreciable due to the formation of the high-density two-dimensional electron gas. This topic deserves a separate discussion and is reserved for future study.

23.
H. B.
Huntington
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
(
Academic
, New York,
1958
), Vol.
7
.
24.
R. W.
Keyes
,
J. Appl. Phys.
33
,
3371
(
1962
).
25.
M. G.
Holland
,
Phys. Rev.
132
,
2461
(
1963
).
26.
E. F.
Steigmeier
,
Appl. Phys. Lett.
3
,
6
(
1963
).
27.
28.
P. G.
Klemens
,
Proc. Phys. Soc., London, Sect. A
68A
,
1113
(
1955
).
29.
G. A.
Slack
,
R. A.
Tanzilli
,
R. O.
Pohl
, and
J. W.
Vandersande
,
J. Phys. Chem. Solids
48
,
641
(
1987
).
30.
A.
Jezowski
,
B. A.
Danilchenko
,
M.
Bockowski
,
I.
Grzegory
,
S.
Krukowski
,
T.
Suski
, and
T.
Paszkiewicz
,
Solid State Commun.
128
,
69
(
2003
).
31.
P. G.
Klemens
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
, (
Academic
, New York,
1958
), Vol.
7
.
32.
V.
Bougrov
,
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
A.
Zubrilov
, in
Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
(
Wiley
, New York,
2001
).
33.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
34.
B.
Lam
 et al,
Mater. Res. Soc. Symp. Proc.
639
,
G6
4
(
2001
).
35.
The data is reported on the website http://users.mrl.uiuc.edu/cahill/tcdata/al2o3all.fin
36.
K. A.
McCarthy
and
S. S.
Ballard
,
J. Opt. Soc. Am.
41
,
1062
(
1951
).
37.
G. A.
Slack
,
L. J.
Schowalter
,
D.
Morellic
, and
J. A.
Freitas
, Jr.
,
J. Cryst. Growth
246
,
287
(
2002
).
38.
R. C.
Zeller
and
R. O.
Pohl
,
Phys. Rev. B
,
4
,
2029
(
1971
).
39.
D.
Kotchetkov
and
A. A.
Balandin
,
Mater. Res. Soc. Symp. Proc.
764
,
C3
43
(
2003
).
40.
L.
Braginsky
,
N.
Lukzen
,
V.
Shklover
, and
H.
Hofmann
,
Phys. Rev. B
66
,
134203
(
2002
).
41.
A.
Balandin
,
Phys. Low-Dim Structures
1/2
,
1
(
2000
).
You do not currently have access to this content.