We report a study of the optical signal amplification properties of Rhodamine 640 in solution, in thin-film format dispersed within a poly(methyl methacrylate) (PMMA) polymer matrix, and in a waveguiding structure created by coating polymer-dispersed Rhodamine 640 onto a patterned quartz substrate. The optical signal amplification experiments were carried out using a collinear pump and signal setup. Depending on both pump and signal energies, gains of up to 41 dB were achieved in solution, while 1% by weight dye-doped PMMA films showed net gains of 54cm1, and associated losses of 16cm1. Using the same concentration dye/PMMA dispersions, waveguide structures were fabricated with a 120×1μm2 cross section and a length of 1.2 cm. The internal optical gain values measured at 625 and 650 nm were found to be as high as 26 and 8 dB, respectively. The corresponding signal-to-noise ratio was in the 7–21-dB range at 625 nm and in the 3–21-dB range at 650 nm. Both in solution and in the waveguide structures we found that amplified spontaneous emission had a detrimental effect on the optical gain characteristics through a decrease in the signal-to-noise ratio.

1.
W.
Li
 et al.,
Microwave Opt. Technol. Lett.
20
,
163
(
1999
).
2.

Plastic Opitcal Fiber Trade Organization. Present State-of-the-art of Plastic Optical Fiber (POF) Components and Systems. 2004 Internet Communication.

3.
L.
Eldada
and
L. W.
Shacklette
,
IEEE J. Sel. Top. Quantum Electron.
6
,
54
(
2000
).
4.
A. R.
Blythe
and
J. R.
Vinson
,
Polym. Adv. Technol.
11
,
601
(
2000
).
5.
T. L.
Koch
,
L. C.
Chiu
, and
A.
Yariv
,
J. Appl. Phys.
53
,
6047
(
1982
).
6.
T. L.
Koch
,
L. C.
Chiu
, and
A.
Yariv
,
Opt. Commun.
40
,
364
(
1982
).
7.
A.
Tagaya
,
S.
Teramoto
,
E.
Nihei
,
K.
Sasaki
, and
Y.
Koike
,
Appl. Opt.
36
,
572
(
1997
).
8.
A.
Tagaya
,
Y.
Koike
,
E.
Nihei
,
S.
Teramoto
,
K.
Fujil
,
T.
Yamamoto
, and
K.
Sasaki
,
Appl. Opt.
34
,
988
(
1995
).
9.
G. D.
Peng
,
P. L.
Chu
,
Z. J.
Xiong
,
T. W.
Whitbread
, and
R. P.
Chaplin
,
J. Lightwave Technol.
14
,
2215
(
1996
).
10.
G. D.
Peng
,
P. L.
Chu
,
Z.
Xiong
,
T.
Whitbread
, and
R. P.
Chaplin
,
Opt. Commun.
129
,
353
(
1996
).
11.
S. Y.
Lam
and
M. J.
Damzen
,
Appl. Phys. B: Lasers Opt.
77
,
577
(
2003
).
12.
G.
Karve
,
B.
Bihari
, and
R. T.
Chen
,
Appl. Phys. Lett.
77
,
1253
(
2000
).
13.
W. H.
Wong
,
E. Y. B.
Pun
, and
K. S.
Chan
,
Appl. Phys. Lett.
84
,
176
(
2004
).
14.
M. N.
Weiss
,
R.
Srivastava
,
R. R. B.
Correia
,
J. F.
Martins
, and
C. B.
deAraujo
,
Appl. Phys. Lett.
69
,
3653
(
1996
).
15.
K. L.
Shaklee
and
R. F.
Leheny
,
Appl. Phys. Lett.
18
,
475
(
1971
).
16.
M. D.
McGehee
,
R.
Gupta
,
S.
Veenstra
,
E. K.
Miller
,
M. A.
Diaz-Garcia
, and
A. J.
Heeger
,
Phys. Rev. B
58
,
7035
(
1998
).
17.
U.
Ganiel
,
A.
Hardy
,
G.
Neumann
, and
D.
Treves
,
IEEE J. Quantum Electron.
11
,
881
(
1975
).
You do not currently have access to this content.